Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary information

Simultaneous negative thermal quenching luminescence of upconversion

and downshifting processes in Al₂(WO₄)₃:Yb/Er Phosphors with low

thermal expansion

Haokun Yan^a, Renfu Li^a, Liuzhen Feng^a, Yiqi Yu^a, Guoliang Gong^a, Haiping Huang^a, He-Rui Wen^a and Jinsheng Liao^{*ab}

^aSchool of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Molecular

Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000, P.R. China.

E-mail address: jsliao1209@126.com (J. S. Liao)

^bNational Rare Earth Functional Material Innovation Center, Ganzhou 341000, P.R. China

T (K)	298	323	348	373	398	423			
Crystal system	Orthorhombic								
Space group	<i>Pnca</i> (No.60)								
Lattice parameters (Å)	<i>a</i> =9.1555	9.1554	9.1551	9.1550	9.1550	9.1547			
	<i>b</i> =12.6384	12.6398	12.6421	12.6443	12.6464	12.6479			
	<i>c</i> =9.0718	9.0719	9.0719	9.0724	9.0726	9.0726			
V (Å ³)	1049.725	1049.815	1049.980	1050.207	1050.403	1050.491			
R_{wp} (%)	4.25	4.28	4.18	4.25	4.54	4.61			
$R_p(\%)$	3.30	3.34	3.25	3.30	3.55	3.57			
χ^2	2.20	2.15	2.09	2.45	2.53	2.62			
T (K)	448	473	498	523	548	573			
Crystal system	Orthorhombic								
Space group	Pnca (No.60)								
Lattice parameters (Å)	9.1548	9.1546	9.1545	9.1542	9.1540	9.1364			
	12.6497	12.6516	12.6534	12.6549	12.6570	12.5913			
	9.0728	9.0729	9.0731	9.0732	9.0732	9.0560			
V (Å ³)	1050.682	1050.831	1050.990	1051.087	1051.245	1051.589			
R_{wp} (%)	4.42	4.45	4.14	4.44	4.47	4.48			
$R_p(\%)$	3.43	3.47	3.44	3.45	3.45	3.39			
χ^2	2.48	2.58	2.58	2.70	2.73	3.09			
		Al ₂ (WO ₄) ₃ at 293K	<u> </u>					
Crystal system Orthorhombic									
Space group				<i>Pnca</i> (No.60)					
	1		<i>a</i> =9.1364						
Lattice parameters (Å)			<i>b</i> =12.5913						
	*	<i>c</i> =9.0560							
$V(Å^3)$				1041.795					

Table S1 AWO:20%Yb^{3+}/2%Er^{3+}	phosphor cell parameters and refinement parameters at different
temperatures and AWO host cell p	parameters at 293 K.

lifetime of Yb ³⁺ and Er ³⁺ (τ_{Er}) in AWO:20%Yb ³⁺ /2%Er ³⁺										
T (K)	298	323	348	373	398	423				
$ au_{Yb}$ of AWO: 20%Yb ³⁺ (µs)	423.7	422.7	330.7	261.2	262.0	472.3				
τ_{Yb} of AWO:20%Yb^3+/2%Er^3+ (µs)	503.6	492.7	483.9	470.2	462.1	480.1				
$ au_{Er}$ of ${}^{4} m{H}_{11/2}$ of AWO:20%Yb ${}^{3+}/{}^{2}$ %Er ${}^{3+}$ (µs)	107.6	111.3	113.6	113.6	101.6	111.8				
$\frac{\tau_{Er} \text{ of }^{4} \text{I}_{13/2} \text{ of }}{\text{AWO:} 20\% \text{Yb}^{3+}/2\% \text{Er}^{3+} \text{ (ms)}}$	10.55	10.39	10.39	10.14	9.640	9.661				
T (K)	448	473	498	523	548	573				
$ au_{Yb}$ of AWO: 20%Yb ³⁺ (µs)	614.7	804.2	896.7	887.3	842.2	820.5				
τ_{Yb} of AWO:20%Yb ³⁺ /2%Er ³⁺ (µs)	486.8	471.8	467.5	471.3	462.1	456.6				
τ_{Er} of ${}^{4}\text{H}_{11/2}$ of AWO:20%Yb^{3+}/2%Er^{3+} (us)	133.0	139.2	157.5	166.4	168.4	184.6				
(μb)										

Table S2 Temperature-dependent lifetime of Yb³⁺ (τ_{Yb}) in AWO: 20%Yb³⁺ and temperature-dependent lifetime of Yb³⁺ and Er³⁺ (τ_{Er}) in AWO:20%Yb³⁺/2%Er³⁺

Fig. S1 XRD patterns of AWO:xYb/yEr phosphors with different Yb^{3+}/Er^{3+} concentrations at room temperature.

Fig. S2 The Rietveld refinement of the SXRD patterns of the AWO:20%Yb/2%Er phosphor at different temperatures.

Fig. S3 Room temperature UC spectra of varying AWO: xYb/yEr phosphors under 980 nm laser excitation.

Fig. S4 (a) Temperature-related average luminescence lifetime of ${}^{2}F_{5/2}$ excited state of Yb³⁺ in Yb³⁺-doped and Yb³⁺/Er³⁺-codoped Al₂(WO₄)₃ phosphors. (b) Temperature-dependent energy transfer efficiency of Yb³⁺ to Er³⁺.

Fig. S5 The power-dependent UC (a) and DS (b) spectra and Log-Log plots of the luminescence intensity against the excitation power of UC (c) and DS (d) emission in the AWO:20%Yb/2%Er phosphors product under 980 nm laser excitation.