Supporting information

Enhanced oxide ion conductivity in sodium niobate-based ceramics

Pengrong Ren^{1,*} Luting Lu¹, Ming Li², Xin Wang³

¹ Shaanxi Province Key Laboratory for Electrical Materials and Infiltration

Technology, School of Materials Science and Engineering, Xi'an University of

Technology, Xi'an 710048, China

² Advanced Materials Research Group, Department of Mechanical, Materials and

Manufacturing Engineering, Faculty of Engineering, University of Nottingham,

Nottingham NG7 2RD, UK

³ Laboratory of Thin Film Techniques and Optical Test, School of Photoelectrical

Engineering, Xi'an Technological University, Xi'an 710032, China

^{*} Corresponding author, <u>renpengrongxaut@126.com</u> (P. Ren)

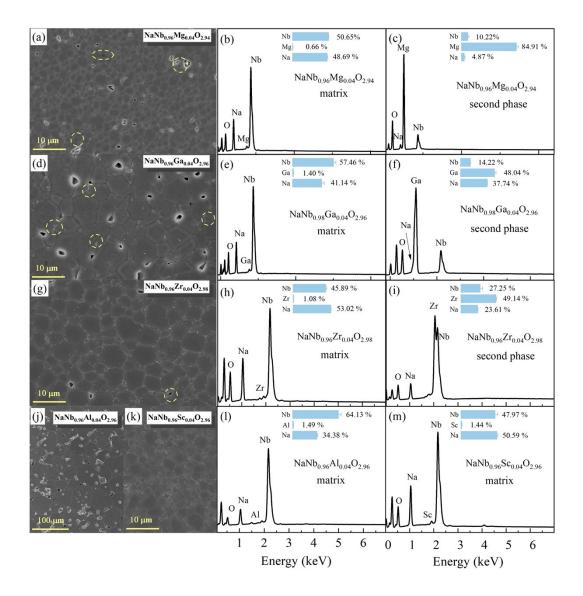


Fig. S1. SEM images and EDS spectra of NaNb_{0.96}Mg_{0.04}O_{2.94}, NaNb_{0.96}Al_{0.04}O_{2.96}, NaNb_{0.96}Ga_{0.04}O_{2.96}, NaNb_{0.96}Sc_{0.04}O_{2.96} and NaNb_{0.96}Zr_{0.04}O_{2.98} ceramics. secondary phase marked with yellow dashed circle.

Table. S1. Relative density of $NaNb_{0.96}Mg_{0.04}O_{2.94}$, $NaNb_{0.96}Al_{0.04}O_{2.96}$, $NaNb_{0.96}Ga_{0.04}O_{2.96}$, $NaNb_{0.96}Sc_{0.04}O_{2.96}$ and $NaNb_{0.96}Zr_{0.04}O_{2.98}$ ceramics. The optimum sintering temperatures are

highlighted in color.

Samples	Sintering temperature (°C)	Density (g/cm ³)	
NaNb _{0.96} Mg _{0.04} O _{2.94}	1025	4.4099	
	1050	4.4299	
	1075	4.3911	

$NaNb_{0.96}Al_{0.04}O_{2.96}$	1275	4.2535
	1300	4.2832
	1325	4.2020
NaNb _{0.96} Ga _{0.04} O _{2.96}	1100	4.2681
	1125	4.3770
	1150	4.3256
$NaNb_{0.96}Sc_{0.04}O_{2.96}$	1175	4.3533
	1200	4.4133
	1225	4.3821
NaNb _{0.96} Zr _{0.04} O _{2.98}	1275	4.4142
	1300	4.4232
	1325	4.3943

Fig. S2 shows XRD patterns of NaNb_{1-x}Mg_xO_{3-3x/2}, NaNb_{1-y}Ga_yO_{3-y} ceramics. No secondary phases are detected for all specimens at the detection threshold of the XRD instrument. Fig. S3 shows the typical microstructural morphologies of NaNb_{1-x}Mg_xO_{3-3x/2}, NaNb_{1-y}Ga_yO_{3-y} ceramics. As shown in the table S1, the relative density of all samples decreases with increasing Mg²⁺ and Ga³⁺ doping content. Although XRD displays the presence of a pure perovskite structure, the microstructure of the NaNb_{1-x}Mg_xO_{3-3x/2} samples also indicate a small number of secondary phases (marked with yellow dashed circles). A small amount of the secondary phases is also presented in the NaNb_{1-y}Ga_yO_{3-y} specimen, indicating that MgO and Ga₂O₃ are not completely dissolved into the NN lattice. As shown in Fig. S3, there are small changes in average grain size

of NaNb_{1-x}Mg_xO_{3-3x/2}. The average grain size decreases and then increases with increasing x, from 2.96 μ m for x = 0.02 to 2.52 μ m for x = 0.04 and then to 3.09 μ m for x = 0.06. The average grain size of NaNb_{1-y}Ga_yO_{3-y} decreases with increasing y, from 4.69 μ m for y = 0.02, to 4.41 μ m for y = 0.04, and 4.06 μ m for y = 0.06. The presence of the secondary phase inhibits the migration of grain boundaries, which leads to a decrease in grain size.

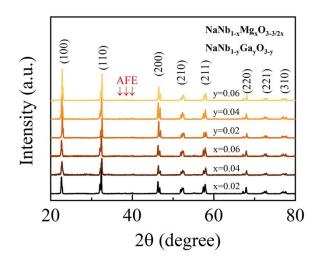


Fig. S2. XRD patterns of NaNb_{1-x}Mg_xO_{3-3x/2} and NaNb_{1-y}Ga_yO_{3-y}.

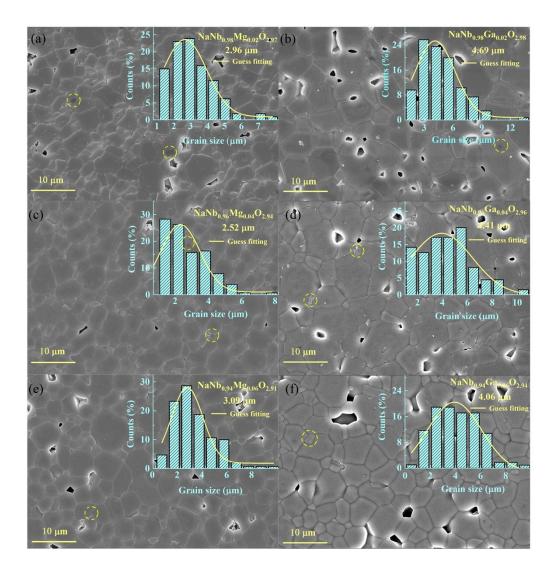


Fig. S3. SEM images of (a, c, e) NaNb_{1-x}Mg_xO_{3-3x/2} and (b, d, f) NaNb_{1-y}Ga_yO_{3-y} ceramics.

Samples	x = 0.02	x = 0.04	x = 0.06	y = 0.02	y = 0.04	y = 0.06
Relative density	97.42%	97.20%	96.93%	96.69%	96.51%	96.33%

Table. S2. Relative density of $NaNb_{1-x}Mg_xO_{3-3x/2}$ and $NaNb_{1-y}Ga_yO_{3-y}$ ceramics.

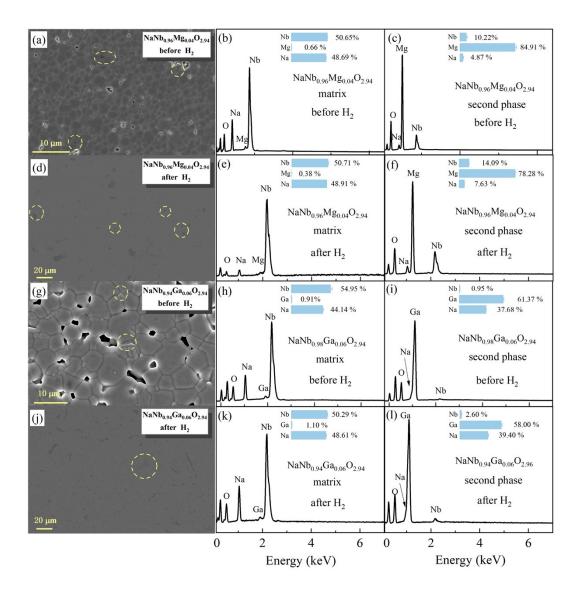


Fig. S4. SEM images and EDS spectra of $NaNb_{0.96}Mg_{0.04}O_{2.94}$ and $NaNb_{0.94}Ga_{0.06}O_{2.94}$ before and after annealed at 600 °C for 6 h in H₂. The secondary phase is marked with yellow dashed circle.