Electronic Supplementary information for the article

Bright luminescence of new low-melting copper(I) chlorides with compact organic cations

Daria E. Belikova^a, Sergey A. Fateev^a, Victor N. Khrustalev^{bc}, Vladislava Y. Kozhevnikova^d, Artem A. Ordinartsev^a, Alexander V. Dzuban^d, Eugene A. Goodilin^{ad}, Alexey B. Tarasov^{ad†}

a. Laboratory of New Materials for Solar Energetics, Faculty of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russian Federation.

b. Inorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russian Federation.

c. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russia.

d. Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation

[†] These authors have contributed equally.

* Corresponding author: <u>alexey.bor.tarasov@yandex.ru</u>

Figure S1. Photo of synthesized AcCuCl₂ needle-like crystals in optical microscope.

Figure S2. XRD pattern of the synthesized DMACu₂Cl₃ powder in comparison with the calculated pattern.

Figure S3. XRD pattern of the synthesized AcCuCl₂ powder in comparison with the calculated pattern.

Figure S4. XRD pattern of the synthesized DMACuCl₂ powder in comparison with the calculated pattern.

Figure S5. Hirschfeld surfaces of the elementary units of the inorganic framework for $DMACuCl_2$ and $AcCuCl_2$ phases.

Figure S6. Refined XRD pattern of DMA₄[Cu₂Cl₆]. The black and green curves represent the experimental data and the calculated profile, respectively. The difference curve is plotted in red at the bottom of the pattern. Phase #1 and Phase #2 correspond to DMA₄[Cu₂Cl₆] and DMACuCl₂ phases, respectively.

Figure S7. Refined XRD pattern of DMA₃CuCl₄. The black and green curves represent the experimental data and the calculated profile, respectively. The difference curve is plotted in red at the bottom of the pattern. The excluded reflex corresponds to the DMA₄[Cu₂Cl₆] phase.

Figure S8. Models of anionic frameworks for a) DMA₄[Cu₂Cl₆] and b) DMA₃CuCl₄ phases.

Phase	Cu-Cl bond	Distortion	Cl-Cu-Cl	Bond angle	Shortest Cl…H
	length, Å	index (bond	angles, deg.	variance,	distance**, Å
		length)		deg. ²	
DMACu ₂ Cl ₃	2.2852(5)	0.044	128.26(3)	94.88	2.57(3)
	2.2781(5)		109.964(17)		
	2.5389(5)		105.217(17)		
	2.4436(5)		105.145(19)		
			103.572(17)		
			102.425(17)		
DMACuCl ₂	2.2583(5)	0.062	137.54(4)	238.43	2.2961(3)
	2.5540(6)		107.500(19)		
	2.2583(5)		107.500(19)		
	2.5540(6)		101.361(15)		
			101.361(15)		
			93.19(3)		
AcCuCl ₂	2.3598(7)	0.00347	113.100(8)	31.74	2.54(3)
	2.3762(6)		113.100(8)		
	2.3762(6)		113.100(8)		
	2.3598(7)		113.100(8)		
			104.16(3)		
			100.65(3)		

Table S1. Bond length distortion index and bond angle dispersion values for the studied phases.

Figure S9. Raman spectra of studied hybrid copper(I) halides with DMA⁺ cation recorded at a) room temperature and b) 77 K.

Analysis of the Raman spectra

Based on existing data on Raman modes of other hybrid halometallates with dimethylammonium cations ^{1–3}, we interpreted the strong modes in the fingerprint region of the spectra as NC₂ scissoring at 401 – 406 cm⁻¹ (NC₂ δ_{sc}), NH₂⁺ rocking at 814 – 862 cm⁻¹ (NH₂⁺ δ_{r}), symmetrical and asymmetrical NC₂ stretching at 881 – 890 cm⁻¹ (NC₂ ν_s) and 993 – 1084 cm⁻¹ (N-C ν_{as}), respectively. Other present modes correspond to NC₂ wagging and twisting at 1219 – 1257 cm⁻¹ (NC₂ δ_w , δ_t), NH₂⁺ wagging at 1350 – 1425 cm⁻¹ (NH₂⁺ δ_w) and CH₃ angle-bending deformation at 1450 – 1500 cm⁻¹ (CH₃ δ_b). In the 2700 – 3200 cm⁻¹ region we observe four typical areas corresponding to symmetrical (ν_s) and asymmetrical (ν_{as}) CH₃ and NH₂⁺ stretching. Full list of interpreted peaks is presented in Table S2.

Vibrational frequency, cm ⁻¹								Assignment		
DMACl DMA ₃ CuCl ₄		3CuCl ₄	DMA ₂ CuCl ₃ DMACu		CuCl ₂ DMACu ₂ Cl ₃					
298 K	77 K	298 K	77 K	298 K	77 K	298 K	77 K	298 K	77 K	
169 w	173 w	146 m	158 w	129 w	242 w	131 w	137 w	128 w	137 m	lattice modes
295 w	305 w	243 w	240 w	236 w	289 w	184 w	194 w	239 w	238 w	
		283 w	282 m	279 w		254 w	231 w		267 w	
							280 w			
406 w	401 w	405 w	398 w	400 w	397 w	401 vw	395 w	403 vw	400 w	NC ₂
										scissoring δ_{sc}
		863 w	828 vw	825 w	827 w	825 m	828 m	815 w	822 w	NH ₂ ⁺
			847 vw		846 vw					rocking δ_r
890 s	891 s	886 s	889 s	888 s	889 s	886 s	888 s	881 m	883 s	symmetrical
										NCa
										stretching v
1002 vw	1011 w	999 w	994 m	999 vw	1000 vw	996 vw	1011 m	1008 vw	1012 w	asymmetrical
1029 w	1020 vw	1019 w	1020 m	1012 w	1012 vw	1012 m	1035 w	1000	1021 vw	NC
1054 w	1032 w	1035 vw	1020 m	1019 vw	1020 m	1032 w	10000		1021	atuatahing u
				1033 vw	1035 w					stretching v _{as}
	1060 w	1084 w	1085 w	1085 w	1083 w	1084 w	1072 vw	1073 w	1071 m	-
							1086 w			
1232 w	1236 vw	1229 w	1229 w	1231 vw	1232 w	1219 w	1220 w	1228 vw	1229 vw	NC ₂
										wagging δ_w
1258 w	1246 vw	1253 vw	1256 vw	1250 vw	1252 vw	1249 w		1246 vw	1252 vw	NC ₂ twisting
										δ
1442 w	1419 vw	1371 vw	1367 w	1402 vw	1369 vw	1403 w	1400 vw	1353 vw	1352 w	NH ₂ +
	1446 w	1409 w	1380 vw	1413 vw	1393 vw	1429 w	1430 w	1388 vw	1384 w	wagging &
	-	1436 vw	1393 vw	1424 vw	1406 w	_		1403 vw	1400 vw	wagging 0 _w
			1408 w	1427 vw	1420 w			1429 vw	1423 w	
			1421 vw							
			1427 vw							
			1437 vw							
1479 m	1481 vw	1460 w	1457 m	1458 w	1457 w	1459 w	1459 w	1460 w	1461 m	CH ₃ angle-
	1490 w	1477 w	1465 w	1470 w	1470 m	1470 w	1473 m		1469 m	bending
			1471 w		1481 w		1481 vw			deformation
			1476 w							δь
			1482 w							0
			1491 w							
1602 w	1607 w	1554 vw	1546 w	1554 vw	1549 vw	1559 vw	1555 vw	1567 vw	1785 vw	$\rm NH_2^+$
1619 w	1625 vw	1591 vw		1584 vw		1569 vw	1565 vw			scissoring δ_s
2461 m	2449 w									?
	2471 m									
2786 m	2772 s	2805 w	2802 vw	2802 w	2775 w	2794 w	2780 vw	2800 w	2794 vw	symmetrical
2865 m	2797 s	2861 w	2810 vw	2861 w	2803 w	2843 w	2793 vw	2861 w	2842 vw	CH ₃

Table S2. Models of anionic frameworks for a) DMA₄[Cu₂Cl₆] and b) DMA₃CuCl₄ phases.

	2823 w 2831 vw 2852 w 2868 m		2862 vw		2832 w 2857 w		2831 vw 2842 vw			stretching v_s , overtones of CH ₃ δ_b
2923 m	2910 vw 2925 m	2905 w	2892 vw 2911 w	2904 w	2909 w 2934 w	2901 w	2904 vw 2929 vw 2940 w	2905 vw	2902 vw	symmetrical NH_2^+ stretching v _s
2966 m	2945 w 2968 w	2963 s	2963 s 2984 vw	2963 s	2955 m 2966 s 2973 m	2964 s	2965 s	2964 s	2937 vw 2964 s	asymmetrical CH ₃ stretching v _{as}
3019 m	3001 w 3019 s	3014 m 3026 m	3018 m 3026 m	3020 m 3030 m	3017 s 3029 s	3020 m 3038 w	3015 s 3020 m 3039 w	3028 m 3043 w	3028 m 3043 w	$\begin{array}{c} a symmetrical \\ NH_2^+ \\ stretching \nu_{as} \end{array}$

Figure S10. Differential scanning calorimetry heating curves for the studied phases of hybrid copper(I) halides.

Figure S11. Thermogravimetric curves for melt-processed a) DMA4[Cu₂Cl₆] (theoretical mass change is 62.22%) and b) DMA₃CuCl₄ (theoretical mass change is 71.18%).

References

- 1 J. T. Edsall, J. Chem. Phys., 2004, 5, 225–237.
- 2 G. Bator, R. Jakubas, J. Lefebvre and Y. Guinet, *Vib. Spectrosc.*, 1998, **18**, 203–210.
- 3 M. Wojtaś, G. Bator and J. Baran, *Vib. Spectrosc.*, 2003, **33**, 143–152.