Supporting Information

Exploring the role of viologen and iodocuprate on enhanced resistive switching performance of Anderson polyoxometalatebased three-component hybrids

Huai-Bin Chen,^a Mei-Yun He,^a Tao Li,^a Chu-Chu Deng,^a Hui-Ping Xiao,^a Ming-Qiang Qi,^b Xiang-Jian Kong,^b Hao-Hong Li,^a,* Xin-Xiong Li^a,* and Shou-Tian Zheng^a,*

^aFujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.

^bState Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University Xiamen, 361005, China.

Corresponding authors, E-mail address: lihh@fzu.edu.cn, lxx@@fzu.edu.cn, stzheng@fzu.edu.cn

Contents

Section 1: Experimental section

Section 2: Additional table

Section 3: Additional structural figures and characterizations

Section 1: Experimental Section

Materials and General methods: (TBA)₃MnMo₆O₁₈(L)₂·2CH₃CN precursor was prepared as described in the literature,¹ and 2-(Hydroxymethyl)-2-(pyridine-4-yl)-1,3-propanediol (H₃L) was synthesized with literature method.² All other chemicals were commercially purchased and used without further purification. IR spectra were recorded on an Opus Vertex 70 FT-IR infrared spectrophotometer in the range of 400~4000 cm⁻¹. Thermogravimetric analysiswas performed on a Mettler Toledo TGA/SDTA 851e analyzer under an air-flow atmosphere with a heating rate of 10 °C/min in the temperature of 30~1000 °C. PXRD patterns were obtained by using a Ultima IV diffractometer with Cu-K α radiation ($\lambda = 1.5418$ Å) in the range 5~ 45°. UV-vis adsorption spectra were collected using a PerkinElmer Lambda 35 spectrophotometer to monitor the release process. Cyclic voltammetry (CV) was performed with a CHI660E electrochemical workstation by using of a conventional three-electrode cell. The HR-SEM images were taken on a Verios G4 field-emission scanning electron microscope. Electrical bistability measurement on ITO/POMOF/Ag device was executed on KEYSIGHT B2911A single channel digital source meter. Single-crystal X-ray diffraction data for 1, 2 and 3 were collected on a Bruker APEX II diffractometer at 175 K equipped with a fine focus, 2.0 kW sealed tube X-ray source (MoK radiation, $\lambda = 0.71073$ Å) operating at 50 kV and 30 mA.

Synthesis

(MV)₃(MnMo₆O₁₈L₂)₂·4DMF (1): A mixture of (TBA)₃[MnMo₆O₁₈L₂]·2CH₃CN (0.274 g, 0.20 mmol), MV·Cl₂ (0.0127 g, 0.0697 mmol) were mixed in 4 mL DMF. After stirring for 1 hour, the resultant mixture was sealed in a glass vial (20 mL) and heated at 90 °C for 3 days. After cooling to room temperature slowly, orange block crystals were obtained. Yield: about 24 mg (30% based on Mn). IR (solid ATR, ν /cm⁻¹): 3051 (w), 1637 (m), 1596 (m), 1052 (s), 904 (vs), 638 (vs), 565 (w). (MV)₂[Cu(DMF)₂](MnMo₆O₁₈L₂)₂·6DMF (2): 2 was synthesized using the same process to that of 1, except CuI (0.0358 g, 0.1880 mmol) was used as additional starting material. Transparent block crystals can be obtained (yield: 10.2 mg, 30% based on Mn). IR (solid ATR, ν /cm⁻¹): 3051 (w), 1324 (s), 1056 (s), 910 (s), 655 (s), 555 (m).

 $(MV)_2(Cu_2I_3)(MnMo_6O_{18}L_2)\cdot 4CH_3CN$ (3): 3 was prepared under the same conditions with that of 2, except that acetonitrile (4 mL) was used as solvent insteat of DMF. Brown block crystals with yield of 30% (based on Mn, 26.7 mg) can be obtained. IR (solid ATR, v/cm^{-1}): 3356 (w), 3046 (w),

2958 (w), 2923 (w), 1637 (vs), 1559 (s), 1494 (s), 1430 (s),1324 (s), 1268 (s),1187 (m), 1055 (s), 917(s), 815 (s), 655 (s), 558 (m).

X-ray single crystal diffraction

X-ray diffraction data was collected on a Bruker APEX II CCD area diffractometer equipped with a fine focus, 2.0 kW sealed tube X-ray source (Mo K α radiation, $\lambda = 0.71073$ Å) at 175(2) K. During the data reduction, multi-scan absorption correction (SADABS) including corrections for Lorentz and polarization effects has applied. Crystal structure was solved by the direct method with program SHELXS and refined with the least-squares program SHELXL.³ The structures were verified by the ADDSYM algorithm in the PLATON program.⁴ The refinement details are summarized in Table S1, selected bond lengths and angles are listed in Table S2, hydrogen bond details are given in Table S3-6. CCDC 2233694-2233696 contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Device Fabrication

The memory devices with the structures of ITO/active layer/Ag have been fabricated according to previous literature.⁵ ITO-coated glass substrate was sequentially cleaned by ultrasonic in acetone, ethanol and deionized water for 20 min, and dried in an oven for 15 min at 110 °C. Afterward, 5 mg as-synthesized Anderson-based hybrids hybrids or their precursors (methyl viologen (MV^{2+}), CuI, ($MnMo_6O_{18}L_2$)) were dissolved in 5 mL DMF (concentration: 1 mg/mL). Then 100 µL as-prepared suspension was spin-coated onto ITO substrate. During the spin-coated process, the speed was controlled as follows: 300 rpm for 10 s firstly, and then 2500 rpm for another 40 s. Ag pastes were deposited as the top electrodes through a shadow mask (500 µm width) with circular holes with a diameter about 0.1 cm. Finally, the device was dried at 60°C for 30 minutes to improve the adhesion.

Section 2: Additional table

	1	2	3	3-heated
Empirical formula	$C_{84}H_{110}Mn_2Mo_{12}N_{14}O_{52}\\$	$C_{41}H_{51}CuMn_2Mo_{12}N_6O_{50}\\$	$C_{48}H_{57}Cu_2I_3MnMo_6N_{10}O_{24}\\$	$C_{42}H_{48}Cu_2I_3MnMo_6N_6O_{24}\\$
Formula weight	3409.02	3868.06	2296.42	2159.22
Crystal system	Monoclinic	Triclinic	Triclinic	Triclinic
Space group	$P2_{1}/n$	P-1	P-1	P-1
<i>a</i> (Å)	22.8412(12)	18.6013(14)	13.4196(16)	13.6009(13)
<i>b</i> (Å)	13.7093(7)	18.6693(15)	13.6602(16)	13.6289(13)
c (Å)	35.3091(16)	23.668(2)	19.687(2)	19.6868(19)
α (°)	90	75.297(3)	72.664(2)	79.229(2)
β (°)	97.084(2)	85.771(3)	79.244(2)	72.871(2)
γ (°)	90	82.235(3)	80.619(2)	80.347(2)
$V(Å^3)$	10972.2(9)	7870.5(11)	3362.2(7)	3401.2(6)
Ζ	4	2	2	2
<i>F</i> (000)	6728	3856	2202	2056
$\rho_{calcd}(g/cm^3)$	2.064	1.632	2.268	2.108
Temperature (K)	175(2)	175(2)	175(2)	175(2)
$\mu(mm^{-1})$	1.642	1.290	3.339	3.292
Refl. Collected	193950	304687	20631	20584
Independent relf.	19417	27982	11410	11785
Parameters	1500	1742	871	764
GOF on F^2	1.038	1.050	0.999	1.021
Final R indices ($I=$	$R_1 = 0.0333,$	$R_1 = 0.0738,$ $wR_2 = 0.1964$	$R_1 = 0.0534,$	$R_1 = 0.0441,$ wB_2 = 0.0724
$2\sigma(I))$	wR ₂ =0.0765	WR <u>2</u> 0.1904	wR ₂ =0.0938	wit <u>y</u> 0.0724
R indices (all data)	$R_1 = 0.0368,$	$R_1 = 0.0972,$	$R_1 = 0.1118,$	$R_1 = 0.0992,$
	w <i>R</i> ₂ =0.0784	$wR_2 = 0.2108$	w <i>R</i> ₂ =0.1116	w <i>R</i> ₂ =0.1121
	Tab	le S2 Mn-O bonds in thi	is work (Å)	
1	Distance 2	Distance 3	Distance 3-heate	d Distance

Table ST I Tay er ystanographie data in this work	Table S1	X-ray	crystal	lographic	data	in this	work
---	----------	-------	---------	-----------	------	---------	------

1	Distance	2	Distance	3	Distance	3-heated	Distance
Mn(1)-O(24)	1.907(3)	Mn(1)-O(19)	2.045(9)	Mn(1)-O(11)#1	1.890(6)	Mn(1)-O(10)	2.013(4)
Mn(1)-O(19)	1.917(3)	Mn(1)-O(20)	1.923(6)	Mn(1)-O(11)	1.890(6)	Mn(1)-O(10)#1	2.013(4)
Mn(1)-O(21)	1.921(3)	Mn(1)-O(21)	1.955(7)	Mn(1)-O(10)#1	1.982(6)	Mn(1)-O(11)	1.969(5)
Mn(1)-O(22)	1.927(3)	Mn(1)-O(22)	2.048(7)	Mn(1)-O(10)	1.982(6)	Mn(1)-O(11)#1	1.969(5)
Mn(1)-O(20)	2.119(3)	Mn(1)-O(23)	1.932(6)	Mn(1)-O(12)#1	2.090(6)	Mn(1)-O(12)	1.959(4)
Mn(1)-O(23)	2.122(3)	Mn(1)-O(24)	1.967(7)	Mn(1)-O(12)	2.090(6)	Mn(1)-O(12)#1	1.959(4)
Mn(2)-O(43)	1.920(3)	Mn(2)-O(43)	1.917(6)	Mn(2)-O(24)	1.973(6)	Mn(2)-O(22)	2.080(5)
Mn(2)-O(47)	1.930(3)	Mn(2)-O(44)	2.086(7)	Mn(2)-O(24)#2	1.973(6)	Mn(2)-O(22)#2	2.080(5)
Mn(2)-O(46)	1.930(3)	Mn(2)-O(45)	1.929(7)	Mn(2)-O(23)	1.978(7)	Mn(2)-O(23)	1.983(5)
Mn(2)-O(44)	1.934(3)	Mn(2)-O(46)	1.929(7)	Mn(2)-O(23)#2	1.978(7)	Mn(2)-O(23)#2	1.983(5)
Mn(2)-O(48)	2.093(3)	Mn(2)-O(47)	2.100(7)	Mn(2)-O(22)	1.987(6)	Mn(2)-O(24)#2	1.897(4)
Mn(2)-O(45)	2.104(3)	Mn(2)-O(48)	1.928(7)	Mn(2)-O(22)#2	1.987(6)	Mn(2)-O(24)	1.897(4)

Symmetry codes for **3**: #1 -x+2,-y,-z+1; #2 -x,-y+2,-z

C(47)-H(47)···O(17)

0.93

2.34

3.1897(3)

152

1-x,1-y,1-z

Table 55 nyurogen bonus for 1							
D-H…A	D-H/Å	H···A∕ Å	D-A/Å	∠(D-H…A)/°	Symmetry code		
C(37)-H(37B)····O(49)	0.96	2.38	3.3140(2)	164			
C(37)-H(37C)···O(1)	0.96	2.33	3.1126(2)	138	1/2-x,-1/2+y,1/2-z		
C(42)-H(42)····O(35)	0.93	2.26	2.9614(2)	132			
C(44)-H(44)····O(5)	0.93	2.18	3.0779(2)	161	1/2-x,-1/2+y,1/2-z		
C(45)-H(45)···O(52)	0.93	2.51	3.3645(2)	152	1/2-x,-1/2+y,1/2-z		
C(46)-H(46)···O(50)	0.93	2.33	3.1685(2)	150	1/2-x,-1/2+y,1/2-z		
C(47)-H(47)····O(49)	0.93	2.39	3.2784(2)	161	1/2-x,-1/2+y,1/2-z		
C(48)-H(48C)…O(52)	0.96	2.57	3.3815(2)	142	1/2-x,-1/2+y,1/2-z		
C(49)-H(49B)…O(16)	0.96	2.41	3.1872(2)	137	1-x,1-y,1-z		
C(49)-H(49C)…O(17)	0.96	2.44	3.1223(2)	128			
C(50)-H(50)····O(37)	0.93	2.53	3.3048(2)	141	1/2-x,1/2+y,1/2-z		
C(51)-H(51)····O(50)	0.93	2.56	3.4145(2)	153	1/2-x,-1/2+y,1/2-z		
C(54)-H(54)····O(18)	0.93	2.21	3.0606(2)	152	1-x,1-y,1-z		
C(56)-H(56) ····O(40)	0.93	2.43	3.0560(2)	125	1/2-x,1/2+y,1/2-z		
C(57)-H(57)····O(29)	0.93	2.44	3.3081(2)	156	1/2-x,-1/2+y,1/2-z		
C(58)-H(58)····O(13)	0.93	2.38	3.2462(2)	155	1-x,-y,1-z		
C(58)-H(58)····O(14)	0.93	2.48	3.1910(2)	133	1-x,-y,1-z		
C(60)-H(60A)O(14)	0.96	2.26	3.1581(2)	156	1-x,-y,1-z		
C(60)-H(60B)····O(27)	0.96	2.23	3.0997(2)	150	1/2-x,-1/2+y,1/2-z		
C(61)-H(61)····O(30)	0.93	2.5	2.8556(2)	103			
C(62)-H(62)····O(26)	0.93	2.33	3.2330(2)	165	1-x,-y,-z		
C(64)-H(64)····O(11)	0.93	2.48	3.1653(2)	130			
C(65)-H(65)····O(9)	0.93	2.44	3.2101(2)	141			
C(67)-H(67)····O(25)	0.93	2.31	3.0320(2)	134	1-x,-y,1-z		
C(69)-H(69)····O(6)	0.93	2.32	3.1333(2)	147	x,-1+y,z		
C(70)-H(70)····O(4)	0.93	2.51	3.2240(2)	133	x,-1+y,z		
C(71)-H(71C)···O(12)	0.96	2.43	3.1811(2)	135	3/2-x,-1/2+y,1/2-z		
C(74)-H(74)····O(29)	0.93	2.56	3.3386(2)	141			
С(76)-Н(76С)…О(32)	0.96	2.43	3.3381(2)	158	3/2-x,-1/2+y,1/2-z		
C(81)-H(81)····O(8)	0.93	2.48	3.3099(2)	148			
C(82)-H(82A)····O(8)	0.96	2.52	3.3632(2)	147			
C(83)-H(83A)O(13)	0.96	2.49	3.3218(2)	145	3/2-x,1/2+y,1/2-z		
	•	Table S4 Hydro	ogen Bonds fo	or 2			
D-HA	D-H/Å	HA/ Å	D-A/Å	∠(D-HA)/°	Symmetry code		
C(42)-H(42A)····O(17)	0.96	2.45	3.3973(3)	170	x,1+y,-1+z		
C(42)-H(42B)····O(17)	0.96	2.45	3.3485(3)	156	1-x,1-y,1-z		
C(43)-H(43)····O(14)	0.93	2.4	3.1633(3)	139	x,1+y,-1+z		
C(43)-H(43)O(15)	0.93	2.56	3.2369(3)	130	x,1+y,-1+z		
C(44)-H(44)····O(52)	0.93	2.33	3.2463(3)	170	1-x,1-y,-z		
C(46)-H(46)O(1)	0.93	2.55	3.1777(3)	125	1-x,1-y,1-z		

Table S3 Hydrogen Bonds for 1

$C(50)^{-11}(50) = O(2)$	0.93	2.49	3.3616(3)	156				
C(58)-H(58)····O(4)	0.93	2.56	3.1191(3)	119				
C(62)-H(62)····O(28)	0.93	2.35	3.0881(3)	137	-x,1-y,1-z			
C(63)-H(63A)····O(56)	0.96	2.5	3.0884(3)	120				
C(64)-H(64)····O(57)	0.93	2.28	3.0234(3)	136				
C(66)-H(66A)····O(40)	0.96	2.47	3.4022(3)	164	-x,1-y,1-z			
C(70)-H(70A)…O (60)	0.96	2.54	3.2251(3)	128	-1+x,y,1+z			
C(71)-H(71)····O(25)	0.93	2.6	3.5285(3)	177				
C(74)-H(74)····O(39)	0.93	2.5	3.4088(3)	166	x,1+y,-1+z			
C(76)-H(76B)····O(37)	0.96	2.56	3.4700(3)	157	x,1+y,-1+z			
C(77)-H(77)····O(14)	0.93	2.4	3.1612(3)	139				
C(78)-H(78B)O(58)	0.96	2.56	3.4557(3)	155				
C(83)-H(83)····O(31)	0.93	2.4	3.2936(3)	162	-x,1-y,1-z			
C(86)-H(86)····O(4)	0.93	2.56	3.3764(3)	147				
C(86)-H(86)O(6)	0.93	2.54	3.3329(3)	144				
C(88)-H(88C)O(25)	0.96	2.51	3.2654(3)	136	1-x,1-y,1-z			
C(90)-H(90B)…O(36)	0.96	2.59	3.4675(3)	152	-x,1-y,1-z			
C(92)-H(92)····O(54)	0.93	2.47	3.3777(3)	166	1-x,1-y,-z			
Table S5 Hydrogen Bonds for 3								
D-HA	D-H/Å	H…A/ Å	D-A/Å	∠(D-HA)/°	Symmetry code			
C(24)-H(24)····O(14)	1.09	2.52	3.1064(4)	113	-x,2-y,1-z			
C(24)-H(24)····O(16)	1.09	2.19	3.1799(4)	150	-x,2-y,1-z			
C(27)-H(27)····N(8)	1.13	2.19	3.2355(4)	153				
		2.01	3.8732(5)	151				
C(31)-H(31A)…I(1)	0.96	5.01		151	1-x,1-y,1-z			
C(31)-H(31A)…I(1) C(31)-H(31B)…O(14)	0.96 0.96	2.47	3.3290(4)	131	1-x,1-y,1-z -x,2-y,1-z			
C(31)-H(31A)…I(1) C(31)-H(31B)…O(14) C(32)-H(32)…O(6)	0.96 0.96 0.93	2.47 2.5	3.3290(4) 2.9000(3)	131 149 106	1-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z			
C(31)-H(31A)···I(1) C(31)-H(31B)···O(14) C(32)-H(32)···O(6) C(32)-H(32)···I(1)	0.96 0.96 0.93 0.93	2.47 2.5 2.96	3.3290(4) 2.9000(3) 3.7020(4)	149 106 138	l-x,l-y,l-z -x,2-y,l-z -1+x,1+y,z l-x,1-y,l-z			
C(31)-H(31A)···I(1) C(31)-H(31B)···O(14) C(32)-H(32)···O(6) C(32)-H(32)···I(1) C(35)-H(35)···N(7)	0.96 0.96 0.93 0.93 0.93	2.47 2.5 2.96 2.57	3.3290(4) 2.9000(3) 3.7020(4) 3.1167(4)	149 106 138 118	l-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,1-y,1-z -1+x,1+y,z			
C(31)-H(31A) \cdots I(1) C(31)-H(31B) \cdots O(14) C(32)-H(32) \cdots O(6) C(32)-H(32) \cdots I(1) C(35)-H(35) \cdots N(7) C(36)-H(36) \cdots O(14)	0.96 0.96 0.93 0.93 0.93 0.93	2.47 2.5 2.96 2.57 2.31	3.3290(4) 2.9000(3) 3.7020(4) 3.1167(4) 3.1784(4)	149 106 138 118 155	1-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,1-y,1-z -1+x,1+y,z -x,2-y,1-z			
C(31)-H(31A)···I(1) C(31)-H(31B)···O(14) C(32)-H(32)···O(6) C(32)-H(32)···I(1) C(35)-H(35)···N(7) C(36)-H(36)···O(14) C(37)-H(37A)···O(3)	0.96 0.96 0.93 0.93 0.93 0.93 0.93 0.96	2.47 2.5 2.96 2.57 2.31 2.42	3.3290(4) 2.9000(3) 3.7020(4) 3.1167(4) 3.1784(4) 3.2960(4)	149 106 138 118 155 151	1-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,1-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z			
C(31)-H(31A) \cdots I(1) C(31)-H(31B) \cdots O(14) C(32)-H(32) \cdots O(6) C(32)-H(32) \cdots I(1) C(35)-H(35) \cdots N(7) C(36)-H(36) \cdots O(14) C(37)-H(37A) \cdots O(3) C(37)-H(37B) \cdots O(5)	0.96 0.96 0.93 0.93 0.93 0.93 0.93 0.96 0.96	2.47 2.5 2.96 2.57 2.31 2.42 2.37	3.3290(4) 2.9000(3) 3.7020(4) 3.1167(4) 3.1784(4) 3.2960(4) 3.3224(4)	149 106 138 118 155 151 174	1-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,1-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z -x,2-y,1-z			
C(31)-H(31A) \cdots I(1) C(31)-H(31B) \cdots O(14) C(32)-H(32) \cdots O(6) C(32)-H(32) \cdots I(1) C(35)-H(35) \cdots N(7) C(36)-H(36) \cdots O(14) C(37)-H(37A) \cdots O(3) C(37)-H(37B) \cdots O(5) C(38)-H(38) \cdots O(4)	0.96 0.96 0.93 0.93 0.93 0.93 0.96 0.96 0.93	2.47 2.5 2.96 2.57 2.31 2.42 2.37 2.41	3.3290(4) 2.9000(3) 3.7020(4) 3.1167(4) 3.1784(4) 3.2960(4) 3.3224(4) 3.2470(4)	149 106 138 118 155 151 174 150	1-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,1-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z -x,2-y,1-z -x,2-y,1-z			
$C(31)-H(31A)\cdots I(1)$ $C(31)-H(31B)\cdots O(14)$ $C(32)-H(32)\cdots O(6)$ $C(32)-H(32)\cdots I(1)$ $C(35)-H(35)\cdots N(7)$ $C(36)-H(36)\cdots O(14)$ $C(37)-H(37A)\cdots O(3)$ $C(37)-H(37B)\cdots O(5)$ $C(38)-H(38)\cdots O(4)$ $C(41)-H(41)\cdots N(10)$	0.96 0.96 0.93 0.93 0.93 0.93 0.96 0.96 0.93 0.93	2.47 2.5 2.96 2.57 2.31 2.42 2.37 2.41 2.46	3.3290(4) 2.9000(3) 3.7020(4) 3.1167(4) 3.1784(4) 3.2960(4) 3.3224(4) 3.2470(4) 3.2366(4)	149 106 138 118 155 151 174 150 141	1-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,1-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z -x,2-y,1-z -x,2-y,1-z			
C(31)-H(31A)···I(1) C(31)-H(31B)···O(14) C(32)-H(32)···O(6) C(32)-H(32)···I(1) C(35)-H(35)···N(7) C(36)-H(36)···O(14) C(37)-H(37A)···O(3) C(37)-H(37B)···O(5) C(38)-H(38)···O(4) C(41)-H(41)···N(10) C(43)-H(43A)···O(5)	0.96 0.93 0.93 0.93 0.93 0.93 0.96 0.96 0.93 0.93 0.96	2.47 2.5 2.96 2.57 2.31 2.42 2.37 2.41 2.46 2.58	3.3290(4) 2.9000(3) 3.7020(4) 3.1167(4) 3.1784(4) 3.2960(4) 3.3224(4) 3.22470(4) 3.2366(4) 3.4867(4)	131 149 106 138 118 155 151 174 150 141 157	1-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,1-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z -x,2-y,1-z -x,2-y,1-z -1+x,1+y,z			
C(31)-H(31A) \cdots I(1) C(31)-H(31B) \cdots O(14) C(32)-H(32) \cdots O(6) C(32)-H(32) \cdots I(1) C(35)-H(35) \cdots N(7) C(36)-H(36) \cdots O(14) C(37)-H(37A) \cdots O(3) C(37)-H(37B) \cdots O(5) C(38)-H(38) \cdots O(4) C(41)-H(41) \cdots N(10) C(43)-H(43A) \cdots O(5) C(45)-H(45A) \cdots I(3)	0.96 0.96 0.93 0.93 0.93 0.93 0.96 0.96 0.93 0.96 0.96	2.47 2.5 2.96 2.57 2.31 2.42 2.37 2.41 2.46 2.58 3.03	3.3290(4) 2.9000(3) 3.7020(4) 3.1167(4) 3.1784(4) 3.2960(4) 3.2224(4) 3.22470(4) 3.2366(4) 3.4867(4) 3.8173(5)	149 106 138 118 155 151 174 150 141 157 140	1-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,1-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z 1-x,2-y,1-z			
C(31)-H(31A) \cdots I(1) C(31)-H(31B) \cdots O(14) C(32)-H(32) \cdots O(6) C(32)-H(32) \cdots I(1) C(35)-H(35) \cdots N(7) C(36)-H(36) \cdots O(14) C(37)-H(37A) \cdots O(3) C(37)-H(37B) \cdots O(5) C(38)-H(38) \cdots O(4) C(41)-H(41) \cdots N(10) C(43)-H(45A) \cdots O(5) C(45)-H(45B) \cdots O(19)	0.96 0.93 0.93 0.93 0.93 0.93 0.96 0.96 0.96 0.96 0.96	2.47 2.5 2.96 2.57 2.31 2.42 2.37 2.41 2.46 2.58 3.03 2.46	3.3290(4) 2.9000(3) 3.7020(4) 3.1167(4) 3.1784(4) 3.2960(4) 3.3224(4) 3.22470(4) 3.2366(4) 3.4867(4) 3.8173(5) 3.3127(4)	149 106 138 118 155 151 174 150 141 157 140 148	1-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,1-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z 1-x,2-y,1-z -1+x,1+y,z 1-x,-y,1-z -x,1-y,1-z			
C(31)-H(31A) \cdots I(1) C(31)-H(31B) \cdots O(14) C(32)-H(32) \cdots O(6) C(32)-H(32) \cdots I(1) C(35)-H(35) \cdots N(7) C(36)-H(36) \cdots O(14) C(37)-H(37A) \cdots O(3) C(37)-H(37B) \cdots O(5) C(38)-H(38) \cdots O(4) C(41)-H(41) \cdots N(10) C(43)-H(43A) \cdots O(5) C(45)-H(45A) \cdots I(3) C(45)-H(45B) \cdots O(19) C(47)-H(47A) \cdots O(2)	0.96 0.96 0.93 0.93 0.93 0.93 0.96 0.96 0.96 0.96 0.96	2.47 2.5 2.96 2.57 2.31 2.42 2.37 2.41 2.46 2.58 3.03 2.46 2.5	3.3290(4) 2.9000(3) 3.7020(4) 3.1167(4) 3.1784(4) 3.2960(4) 3.2224(4) 3.22470(4) 3.2366(4) 3.4867(4) 3.8173(5) 3.3127(4) 3.4104(4)	149 106 138 118 155 151 174 150 141 157 140 148 158	1-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,1-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z -x,2-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,-y,1-z -x,1-y,1-z -x,2-y,1-z			
C(31)-H(31A) \cdots I(1) C(31)-H(31B) \cdots O(14) C(32)-H(32) \cdots O(6) C(32)-H(32) \cdots I(1) C(35)-H(35) \cdots N(7) C(36)-H(36) \cdots O(14) C(37)-H(37A) \cdots O(3) C(37)-H(37B) \cdots O(5) C(38)-H(38) \cdots O(4) C(41)-H(41) \cdots N(10) C(43)-H(43A) \cdots O(5) C(45)-H(45A) \cdots I(3) C(45)-H(45B) \cdots O(19) C(47)-H(47B) \cdots O(15)	0.96 0.93 0.93 0.93 0.93 0.93 0.96 0.96 0.96 0.96 0.96 0.96 0.96	2.47 2.5 2.96 2.57 2.31 2.42 2.37 2.41 2.46 2.58 3.03 2.46 2.5 2.21	3.3290(4) 2.9000(3) 3.7020(4) 3.1167(4) 3.1784(4) 3.2960(4) 3.3224(4) 3.22470(4) 3.2366(4) 3.4867(4) 3.8173(5) 3.3127(4) 3.4104(4) 3.0909(4)	149 106 138 118 155 151 174 150 141 157 140 148 158 151	1-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,1-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z -x,2-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,-y,1-z -x,2-y,1-z 1-x,1-y,1-z			
C(31)-H(31A)···I(1) C(31)-H(31B)···O(14) C(32)-H(32)···O(6) C(32)-H(32)···N(7) C(35)-H(35)···N(7) C(36)-H(36)···O(14) C(37)-H(37A)···O(3) C(37)-H(37B)···O(5) C(38)-H(38)···O(4) C(41)-H(41)···N(10) C(43)-H(43A)···O(5) C(45)-H(45A)···I(3) C(45)-H(45B)···O(19) C(47)-H(47B)···O(15)	0.96 0.96 0.93 0.93 0.93 0.93 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96	2.47 2.5 2.96 2.57 2.31 2.42 2.37 2.41 2.46 2.58 3.03 2.46 2.5 2.21 Hydrogen Be	3.3290(4) 2.9000(3) 3.7020(4) 3.1167(4) 3.1784(4) 3.2960(4) 3.3224(4) 3.22470(4) 3.2366(4) 3.4867(4) 3.8173(5) 3.3127(4) 3.4104(4) 3.0909(4) Drds for 3 after	149 106 138 118 155 151 174 150 141 157 140 148 158 151 • heating	1-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,1-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z 1-x,-y,1-z -x,1-y,1-z -x,2-y,1-z 1-x,1-y,1-z			
C(31)-H(31A)···I(1) C(31)-H(31B)···O(14) C(32)-H(32)···O(6) C(32)-H(32)···I(1) C(35)-H(35)···N(7) C(36)-H(36)···O(14) C(37)-H(37A)···O(3) C(37)-H(37B)···O(5) C(38)-H(38)···O(4) C(41)-H(41)···N(10) C(43)-H(45A)···I(3) C(45)-H(45A)···I(3) C(45)-H(45B)···O(19) C(47)-H(47B)···O(2) C(47)-H(47B)···O(15) D-HA	0.96 0.96 0.93 0.93 0.93 0.93 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96	2.47 2.5 2.96 2.57 2.31 2.42 2.37 2.41 2.46 2.58 3.03 2.46 2.5 2.21 Hydrogen Bo HA/ Å	3.3290(4) 2.9000(3) 3.7020(4) 3.1167(4) 3.1784(4) 3.2960(4) 3.2224(4) 3.22470(4) 3.2366(4) 3.4867(4) 3.8173(5) 3.3127(4) 3.4104(4) 3.0909(4) D-A/Å	131 149 106 138 118 155 151 174 150 141 157 140 148 158 151 • heating ∠(D-HA)/°	1-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,1-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z 1-x,-y,1-z -x,1-y,1-z 1-x,1-y,1-z Symmetry code			
C(31)-H(31A)···I(1) C(31)-H(31B)···O(14) C(32)-H(32)···O(6) C(32)-H(32)···I(1) C(35)-H(35)···N(7) C(36)-H(36)···O(14) C(37)-H(37A)···O(3) C(37)-H(37A)···O(3) C(37)-H(37B)···O(5) C(38)-H(38)···O(4) C(41)-H(41)···N(10) C(43)-H(43A)···O(5) C(45)-H(45A)···I(3) C(45)-H(45B)···O(19) C(47)-H(47B)···O(15) D-HA C(26)-H(26)···O(1)	0.96 0.96 0.93 0.93 0.93 0.93 0.96 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.93 0.94 0.95	2.47 2.5 2.96 2.57 2.31 2.42 2.37 2.41 2.46 2.58 3.03 2.46 2.5 2.21 Hydrogen Bo HA/Å 2.53	3.3290(4) 2.9000(3) 3.7020(4) 3.1167(4) 3.1784(4) 3.2960(4) 3.22470(4) 3.2366(4) 3.4867(4) 3.3127(4) 3.3127(4) 3.4104(4) 3.0909(4) D-A/Å 3.1061(3)	131 149 106 138 118 155 151 174 150 141 157 140 148 158 151 • heating ∠(D-HA)/° 121	1-x,1-y,1-z -x,2-y,1-z -1+x,1+y,z 1-x,1-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z -x,2-y,1-z -1+x,1+y,z 1-x,-y,1-z -x,2-y,1-z 1-x,1-y,1-z Symmetry code			

3.1163(3)

3.2762(3)

150

164

-x,1-y,1-z

0.93

0.96

2.28

2.34

C(51)-H(51)···O(53)

C(53)-H(53A)···O(34)

C(30)-H(30A)···O(14)	0.96	2.54	3.1868(3)	125	1-x,2-y,-z
C(30)-H(30C)…O(1)	0.96	2.45	3.3089(3)	148	1-x,1-y,1-z
C(31)-H(31)…O(1)	0.93	2.32	3.1956(3)	156	1-x,1-y,1-
C(35)-H(35)…I(2)	0.93	2.97	3.7369(4)	141	
C(35)-H(35)····O(21)	0.93	2.51	2.8789(3)	104	1-x,2-y,-z
C(36)-H(36A)···O(20)	0.96	2.59	3.4400(3)	147	1-x,1-y,-z
C(36)-H(36B)…O(20)	0.96	2.52	3.3590(3)	145	1+x,y,z
C(41-)H(41)····O(19)	0.93	2.47	3.3222(3)	152	1+x,y,z

Table S7 RS parameters of memory devices in this work

Devices	V_{Set} /V	V _{Reset} /V	I_{ON}/A	I _{OFF} /A	ON/ OFF ratio
ITO/MV·2I/Ag	2.14	-3.04	1.58×10 ⁻⁴	1.33×10 ⁻⁴	1.19
ITO/CuI/Ag	0.28	-1.98	1.48×10 ⁻⁴	1.17×10 ⁻⁴	1.26
ITO/MnMo ₆ O ₁₈ L ₂ /Ag	0.42	-2.33	1.51×10 ⁻⁴	1.89×10 ⁻⁵	7.99
ITO/1/Ag	1.39	-2.53	$1.84 imes 10^{-4}$	1.55×10^{-5}	12.88
ITO/ 2 /Ag	1.42	-3.56	$1.98 imes 10^{-4}$	$2.87 imes 10^{-6}$	64.69
ITO/ 3 /Ag	0.97	-3.49	$1.17 imes 10^{-4}$	5.01×10^{-7}	2.32×10^{2}
ITO/ 3 /Ag after 11 months	0.92	-3.45	1.77×10^{-4}	5.97×10^{-7}	2.96×10^{2}
ITO/ 3 /Ag at 240°C	0.96	3.50	2.52×10^{-4}	4.06×10^{-7}	6.21×10^{2}

Table S8 The comparison with relative POM-based memristors

Devices structure	ON/OFF ratio	$V_{\text{Set}}\!/V_{\text{Reset}}\!/V$	Endurance	Retention(s)	Ref.
ITO/ Na ₆ V ₁₀ O ₂₈ /Cr/Au	25	1.2/0.8	200	2200	6
ITO/H ₃ PW ₁₂ O ₄₀ @PMMA/Au	6×10 ²	1.2/-1.71	100	104	7
ITO/PMMA-MAPOM/Pt	4~5	1.0/1.5/-1.35	50	104	8
ITO/[Co(H ₂ O) ₆] ₂ [Co ₃ (bpdo) ₄ (H ₂ O) ₁₀][Co ₄ (H ₂ O) ₂ (B-a- PW ₉ O ₃₄) ₂]·2 bpdo·14H ₂ O /Ag	55.5	-0.63/0.75	20	-	9
$ITO/\{[Co_{2}(bpdo)_{4}(H_{2}O)_{6}](\alpha\text{-}GeW_{12}O_{40})\}\cdot4(H_{2}O)\}_{n}/Ag$	1.0×10^{2}	1.77/-3.42	100	-	5
$ITO/(MV)_3(MnMo_6O_{18}L_2)_2\cdot 4DMF/Ag$	12.88	1.39/-2.53	20	-	this work
$ITO/(MV)_2[Cu(DMF)_2](MnMo_6O_{18}L_1)_2\cdot 6DMF/Ag$	64.69	1.42/-3.56	84	-	this work
$ITO/(MV)_2[Cu_2I_3](MnMo_6O_{18}L_2)\cdot 4CH_3CN\ /Ag$	2.32 ×10 ²	0.97/-3.49	700	104	this work

Section 3: Additional structural figures and characterizations

Fig. S1 (a) The structure of $(MnMo_6O_{18}L_2)^{3-}$ unit; (b) hydrogen bonds between $(MnMo_6O_{18}L_2)^{3-}$ and MV^{2+} cations in 1; (c) 2D layer of 2 showing the position of MV^{2+} ; (d) the encapsulation of MV^{2+} into the 1D $[(Cu_2I_3)(MnMo_6O_{18}L_2)]_n^{2n-}$ chains.

Fig. S2 (a) IR spectra of three hybrids; Simulated and experiment PXRD patterns: (b) 1; (c) 2; (d) 3.

Fig. S3 (a) TG curves of 1, 2 and 3; (b) simulated and temperature-dependent PXRD patterns of 3.

Fig. S4 The top-view (inserted: the surface AFM image) and the cross-sectional SEM images showing the thickness: (a, b) ITO/1/Ag; (c, d) ITO/2/Ag.

Fig. S5 Device stability of ITO/3/Ag at 240 °C: (a) *I-V* curves; (b) the V_{Set}/V_{Reset} showing random 10 cycles; (c) I_{ON} and I_{OFF} showing random 10 cycles; (d) cycle endurance showing 25 cycles.

Fig. S6 Device stability of ITO/3/Ag after one year: (a) *I-V* curves showing four sweeping ranges; (b) the V_{Set}/V_{Reset} distribution with random 10 cycles; (c) I_{ON} and I_{OFF} showing random 10 cycles; (d) cycle endurance with 100 cycles.

Fig. S7 (a) I-V curves of the ITO/1/Ag showing four sweeping processes; (b) the averaged V_{Set}/V_{Reset} calculated from 10 cycles; (c) the averaged HRS and LRS currents calculated from 10 cycles; (d) cycle endurance of the ITO/1/Ag device by showing 65 cycles.

Fig. S8 (a) *I-V* curves of the ITO/2/Ag device showing four sweeping processes; (b) the averaged V_{Set}/V_{Reset} calculated from 10 cycles; (c) the averaged HRS and LRS currents calculated from 10 cycles; (d) cycle endurance of the ITO/2/Ag device showing 90 cycles.

Fig. S9 (a) I-V curves of the ITO/MV·2I/Ag device with 10 cycles; (b) I-V curves of the ITO/CuI/Ag device with 10 cycles; (c) I-V curves of the ITO/MnMo₆O₁₈L₂/Ag device with 10 cycles; (d) HRS and LRS of ITO/MnMo₆O₁₈L₂/Ag device.

Fig. S10 SEM image of ITO/MnMo₆O₁₈L₂/Ag: (a) top-view SEM image (inserted: the surface AFM image); (b) the cross-sectional image showing the thickness

Fig. S11 Log-log plots on the *I-V* curves: (a) ITO/1/Ag during Set process; (b) ITO/1/Ag during Reset process; (c) ITO/2/Ag under during Set process; (d) ITO/2/Ag during Reset process.

 $\label{eq:Fig.S12} \mbox{ Fig. S12 The XPS spectra: (a) Mn-2p and (b) Mo-3d for MnMo_6O_{18}L_2; (c) Mn-2p and (d) Mo-3d for 1; (e) Mn-2p and (f) Mo-3d for 2; (g) Cu-2p for 2.$

Fig. S13 Cyclic voltammogram (CV) of three hybrids with different scanning rates: (a) 1; (b) 2; (c) 3.

Fig. S14 The packing diagram showing the positions of electron-rich POM/Cu₂I₃ clusters and electron-poor MV²⁺:

(a) 1; (b) 2; (c) 3.

References

1 X. Li, Y. Wang, R. Wang, C. Cui, C. Tian and G. Yang, Angew. Chem. Int. Ed. Engl. 2016, 55, 6462–6466.

2 D. Menozzi, E. Biavardi, C. Massera, F. Schmidtchen, A. Cornia and E. Dalcanale, *Supramol. Chem.* 2010, **22**, 768–775

3 G. A. Sheldrick, A short history of SHELX, Acta Crystallogr. Sect. A 2008, 64, 112-122.

4 A. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr. 2003, 36, 7–13.

5 B. Chen, Y. Huang, K. Song, X. Lin, H. Li and Z. Chen, Chem. Mater. 2021, 33, 2178-2186.

6 N. S. Sterin, B. Nivedita, C. Marc, M. N. Satyanarayan, S. M. Sib and P. D. Partha, *Phys. Status Solidi A*. 2020, **217**, 2000306.

7 X. Chen, P. Huang, X. Zhu, S. Zhuang, H. Zhu, J. Fu, A. Nissimagoudar, W. Li, X. Zhang, L. Zhou, Y. Wang, Z. Lv, Y. Zhou and S. Han, *Nanoscale Horiz*. 2019, **4**, 697–704.

8 B. Hu, C. Wang, J. Wang, J. Gao, K. Wang, J. Wu, G. Zhang, W. Cheng, B. Venkateswarlu, M. Wang, P. Lee and Q. Zhang, *Chem. Sci.* 2014, **5**, 3404–3408.

9 Y. Huang, X. Lin, B. Chen, H. Zheng, Z. Chen, H. Li and S. Zheng, *Angew Chem. Int. Ed. Engl.* 2021, **60**, 16911–16916.