Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Electronic supplementary information

Power Generation from n-type NbCo_{1-x}Ni_xSn and p-type NbFe_{1-x}Mn_xSb Ternary Half-Heusler Compounds: From Materials Development to Module Fabrication

Piyawat Piyasin^{1,2}, Supree Pinitsoontorn^{1,3*}, Philipp Sauerschnig², Kazuki Imasato², Michihiro Ohta^{2*}

¹Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand ²Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan ³Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen, Thailand ^{*}E-mail of the corresponding author: psupree@kku.ac.th; ohta.michihiro@aist.go.jp

Table S1

Relative densities %, maximum zT, and average zT for *n*-type NbCo_{1-x}Ni_xSn and *p*-type NbFe_{1-x}Mn_xSb samples.

Sample	Dopant	Relative	Maximum -T	Average <i>zT</i>
	amount	densities %		(323 K to 873 K)
	x = 0	98	0.14 [at 873 K]	0.06
<i>n</i> -type NbCo₁– _x Ni _x Sn	<i>x</i> = 0.04	98	0.23 [at 873 K]	0.10
	<i>x</i> = 0.10	98	0.34 [at 873 K]	0.18
	x = 0.14	99	0.41 [at 873 K]	0.20
	x = 0	99	0.01 [at 723 K]	0.01
<i>p</i> -type NbFe _{1-x} Mn _x Sb	<i>x</i> = 0.04	99	0.14 [at 723 K]	0.11
	<i>x</i> = 0.10	99	0.07 [at 773 K]	0.06
	<i>x</i> = 0.14	100	0.06 [at 723 K]	0.05

Fig. S1

Zoom-in X-ray diffraction pattern of *n*-type NbCo_{1-x}Ni_xSn measured on the polished surfaces of sintered bulk specimens (**Fig. 1(a)**). The weak secondary phase is indicated by black arrow.

(a) NbCoSn				
30µm ———	Nb	Со		Sn Sn
(b) NbCo _{0.96} Ni _{0.04} Sn				
30µm	Nb	Со	Ni	Sn
(c) NbCo _{0.86} Ni _{0.14} Sn				
30µm ———	Nb	Со	Ni	Sn
(d) NbFeSb				
30µm ———	Nb	Fe		Sb
(e)				
30µm ———	Nb	Fe	Mn	Sb
(f) NbFe _{0.86} Mn _{0.14} Sb 				
30µm ———	Nb	Fe	Mn	Sb

Fig. S2

Energy-dispersive X-ray spectroscopy (EDS) mapping and backscattered electron (BSE) images of (a) NbCoSn, (b) NbCo_{0.96}Ni_{0.04}Sn, (c) NbCo_{0.86}Ni_{0.14}Sn, (d) NbFeSb, (e) NbFe_{0.90}Mn_{0.10}Sb, (f) NbFe_{0.86}Mn_{0.14}Sb.

Fig. S3

 2π -module based on pair of *n*-type NbCo_{0.90}Ni_{0.10}Sn and *p*-type NbFe_{0.96}Mn_{0.04}Sb.

 $20\times 20\ mm^2\ Si_3N_4$ ceramics substrate with height of 0.32 mm.

Fig. S4

(a) a schematic of the 2π -module displaying the positions for resistance measurement, as shown in (b).

Fig. S5

Nominal atomic percentage of EDS mapping at Cu and (a) $NbCo_{0.90}Ni_{0.10}Sn$, and (d) $NbFe_{0.96}Mn_{0.04}Sb$ junction. Atomic percentage of Cu is shown in backscattered electron (BSE) images at difference observed areas.

Fig. S6

The reproducibility of the 2π -HH modules for (a) open-circuit voltage (V_{OC}) and (b) maximum conversion efficiency (η_{max}).