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Fig.S1. (a) Electrode properties of different samples in different batches and (b) 

Electrode properties of different batches. 

Fig.S2. (a) SEM image of Ag/MWCNT composite and (b) its local enlargement.

Fig.S3. OM images of differently printed electrodes via dispenser printing parameters.



Fig.S4. Flexible electrode measured under OM for various printing parameters against 

line width.

Fig.S5. The SEM images and EDX maps of the Ag/MWCNT/PDMS electrode.



Fig.S6. (a) TENG voltage performance of different batches and samples and (b) 

Voltage performance of TENG in different batches.

Fig.S7. Schematic representation of the principle of the effect of MWCNT content in 

the electrode on the performance of TENG.



Fig.S8. (a) Open-circuit voltage test and (b) short-circuit current test for devices of 

different sizes.

 Fig.S9. (a) Load voltage, current and (b) Load power test.

Fig.S10. The working electrical circuit of the TENG-based self-charging system.



Fig.S11. Charging time diagram of capacitors of different sizes.

Fig.S12. Response time testing of TENG in human motion detection.

Fig.S13. Physical image of TENG lighting up 30 LED bulbs.



Table.S1 The representative conductive components and properties of negative friction 

layer materials are reviewed.

Performance
TENG 
type

Printing type Ref.
Base material Filler material

Voc[V] Isc[μA]

PDMS Ag/MWCNT 172 94 SE Dispenser printing
This 
work

Silicone PEDOT:PSS 8 - SE Extrusion printing [1]
Aluminum foil ABS 10 0.7 CS Electrospinning [2]
PAMPS-PAAm NaCl 380 5.7 CS Electrospinning [3]

PET PVC 244 6 CS Electrospinning [4]
PTFE NaNbO3 141 3.89 CS Electrospinning [5]
PET Al 125 12.5 CS Electrospinning [6]
FEP Cu 774 3.92 CS Electrospinning [7]

PVDF AgNPs 25 0.22 SE Screen printing [6]

Nanopaper
Silver 

nanoparticles
98.2 13.7 LS Inkjet printer [8]

Silicone film Silver
nanoparticles

44.16 - CS Direct ink writing [9]

Bare glass AgNPs 0.25 1.6e-5 SE EHD jet printing [10]



Table.S2 A comparison of the properties of TENG for electrodes of metal and carbon 

materials is summarized.

Performance
Electrode material

Frictio
n layer Voc[V] Isc[μA]

Power
TENG 
type

Method Ref.

Ag/MWCNT/PDMS PDMS 172 94 1.45W/m2 SE
Dispense
r printing

This 
work

rGO/AgNWs TPU 42 0.1 6mW/m2 SE Spraying [11]

C-AgNW TPU 12.5 15.8 - SE
Screen 
printing

[12]

AgNPs PVDF 25 0.22 - SE
Screen 
printing

[6]

AgNPs
Silico

ne 
film

44.16 - 1.03W/m2 CS
Inkjet 

printing
[10]

LM/Ag flakes/SEBS
PVDF
-HFP

85 8
219.7mW/

m2 SE
Screen 
printing

[13]

MXene/CNT/PEDOT PTFE 184.1 4.42 - CS
Vacuum-
assisted 
filtration

[14]

CNT Paper 2 0.012 40uW FT
Inkjet 

printing
[15]

Graphene/Cu PDMS 60 14
91.9mW/

m2 SE
Spin-

coating
[16]
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