Supporting Information

Array-based specific classification of bacterial species via hydrophilic/hydrophobic biosensors

Xizhe Li,^a[‡] Pengxin Xue,^a[‡] Haoyu Wang,^a Haojie Li,^a Ruolan Du,^b Jie Gao,^{a*} Kwok-Yin Wong,^b and Yong Qin^a

^{a.} Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China

^{b.} State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

*Corresponding author: Jie Gao (jgao@nwpu.edu.cn)

[‡]These authors contributed equally to this work.

Table of Contents

- 1. Chemical structure of ligands
- 2. Detailed information of the ligands
- 3. Detailed information of the bacteria
- 4. The dosage of various ligands in the synthesis process of AuNCs
- 5. Characterization of AuNCs
- 6. Fluorescent response patterns
- 7. HCA and OPLS-DA results
- 8. Misclassification table and VIP values of OPLS-DA

1. Chemical structure of ligands

Figure S1. Chemical structure of the 12 ligands.

2. Detailed information of the ligands

Table 51. Detailed chemical information of the 12 figuids	Table S1.	Detailed	chemical	information	of the	12 ligands
---	-----------	----------	----------	-------------	--------	------------

No	Compound	CAS	Molecular mass	Molecular	logD*	Name of synthesized
INU	Compound	number	worecular mass	formula	logr ·	AuNCs [#]
1	Vancomycin	1404-93-9	1485.71	$C_{66}H_{76}Cl_{3}N_{9}O_{24}$	-1.44	Vanco@AuNCs
2	Bacitracin	1405-87-4	1422.69	$C_{66}H_{103}N_{17}O_{16}S$	-2.21	Bacit@AuNCs
3	Acrosporin (Polymyxin B)	1405-20-5	1301.6	$C_{56}H_{100}N_{16}O_{17}S$	-3.4	Acros@AuNCs
4	Colistin (Polymyxin E)	1264-72-8	1155.43	$C_{52}H_{98}N_{16}O_{13}$	-3.68	Colistin@AuNCs
5	PEI (Polyethyleneimine)	9002-98-6	~1800	(CH ₂ CH ₂ NH) _n	-5.41	PEI@AuNCs
6	Teicoplanin	61036-62-2	1709.39	C88H97Cl2N9O33	0.4	Teico@AuNCs
7	4-Nitrobenzyl (2S,4S)-2-(Dimethylcarbamoyl)-4- mercapto-1-pyrrolidinecarboxylate	96034-64-9	353.39	$C_{15}H_{19}N_3O_5S$	0.5	DMC-P@AuNCs
8	1-[2-(Dimethylamino)ethyl]-1H-tetrazole-5-thiol	61607-68-9	173.24	$C_5H_{11}N_5S$	0.28	DMAE-T@AuNCs
9	4-Amino-N,N-dimethylbenzylamine	6406-74-2	150.2	$C_9H_{14}N_2$	0.7	DMA-BA@AuNCs
10	4-Amino-2-dimethylamino-6-hydroxypyrimidine Hemihydrate	76750-84-0	154.17	$\mathrm{C_6H_{10}N_4O}$	-1.54	DMA-HP@AuNCs
11	Dansylcadaverine (N-(Dimethyl-amino-naphtha-lene- sulfonyl)-1,5-pentane-diamine)	10121-91-2	335.46	$C_{17}H_{25}N_{3}O_{2}S$	2.83	DMA-N@AuNCs
12	4-(Dimethylamino)benzenethiol	4946-22-9	153.24	$C_8H_{11}NS$	2.63	DMA-BT@AuNCs

*Predicted data is generated using the ACD/Labs Percepta Platform-PhysChem Module. #The hydrophilic ligands were designated by a few letters or abbreviations of the chemical name; the hydrophobic ligands were denoted by utilizing the abbreviation for the dimethylamino group attached to the chemical scaffold.

3. Detailed information of the bacteria

No	Name of bacteria	Abbreviation	Gram species	Strains	Zeta potential
1	Staphylococcus aureus 1	S. aureus 1	positive		-28.34±0.79
2	Staphylococcus aureus 2	S. aureus 2	positive		-33.30 ± 0.73
3	Staphylococcus aureus 3	S. aureus 3	positive		-29.67 ± 0.52
4	Methicillin-resistant Staphylococcus aureus	MRSA	positive		-28.58 ± 1.21
5	Listeria monocytogenes	L. monocytogenes	positive		-30.74 ± 0.78
6	Enterococcus faecalis	E. faecalis	positive		-33.76±0.50
7	Bacillus subtilis	B. subtilis	positive		-28.84±1.56
8	Streptococcus mutans	S. mutans	positive		-30.16 ± 1.41
9	Escherichia coli	E. coli	negative		-31.50 ± 1.75
10	Escherichia coli	E. $coli$ 1	negative	CMCC(B)44102	-35.00 ± 1.02
11	Escherichia coli BL21	E.coli BL21	negative	BL21	-27.99±0.86
12	Pseudomonas aeruginosa	P. aeruginosa	negative		-30.33 ± 0.70
13	Pseudomonas fluorescens	P. fluorescens	negative		-30.32 ± 0.97
14	Salmonella paratyphi B	S. paratyphi B	negative		-9.38 ± 0.57
15	Shigella flexneri	Sh.flexneri	negative		-19.10 ± 0.32
16	Enterobacter sakazakii	E. sakazakii	negative		-22.80 ± 1.73
17	Enterobacter cloacae	E. cloacae	negative		-24.67±1.33

Table S2. Detailed information of the 17 kinds of bacteria.

4. The dosage of various ligands in the synthesis process of AuNCs

Compound	Volume (µL)	Concentration
HAuCl ₄ solution	435	24 mM
GSH aqueous solution	150	100 mM
Ultrapure water	4415	-
Vancomycin	200	1% w/w
Bacitracin	200	1% w/w
Aerosporin (Polymyxin B)	200	1% w/w
Colistin (Polymyxin E)	200	1% w/w
PEI (Polyethyleneimine)	100	1% w/w
4-Nitrobenzyl (2S,4S)-2-(Dimethylcarbamoyl)-4-mercapto-1- pyrrolidinecarboxylate	30	100 mM
1-[2-(Dimethylamino)ethyl]-1H-tetrazole-5-thiol	15	100 mM
4-Amino-N,N-dimethylbenzylamine	30	100 mM
4-Amino-2-dimethylamino-6-hydroxypyrimidine Hemihydrate	30	100 mM
Dansylcadaverine (N-(Dimethyl-amino-naphtha-lene-sulfonyl)- 1,5-pentane-diamine)	75	100 mM
4-(Dimethylamino)benzenethiol	10	100 mM

Table S3. Detailed dosage of each compound

5. Characterization of AuNCs

Figure S2. Extinction spectrum of AuNCs with hydrophilic and hydrophobic ligands, respectively.

Figure S3. TEM imaging of the synthesized AuNCs

Figure S4. Size distribution of the AuNCs.

6. Fluorescent response patterns

Table 54. Fluorescent response patterns of training set in the detection of bacterial samples in water.

Table S4.	Fluore	scent re	espons		ns of tr	raining	set in t	he detect	ion of ba	acterial s	amples	in water.
S. aureus 1	2.588	-2.037	-1.217	-11.076	-1.609	3.958	18.047	-7.400	-9.582	-1.552	-17.292	1.575
S. aureus 1	2.475	-0.895	-2.089	-7.574	-2.992	2.703	17.473	7.878	-14.038	10.870	-8.568	-2.731
S. aureus 1	2.129	-1.441	-2.868	-11.364	-1.710	1.601	17.892	-4.211	-11.244	-3.959	-13.827	-0.528
S. aureus 1 S. aureus 1	1.164	-0.543	-1.992	-10.107	-0.835	2.432	17.456	3.583	0.838	10.645	-6.864	0.409
S. aureus 1	1.904	-3.744	-2.432	-11.499	-0.173	2.243	17.715	5.542	-10.077	-2.093	-9.425	-1.380
S. aureus 2	2.484	-1.353	-2.093	-5.477	-3.340	4.580	-6.424	2.515	3.310	1.126	2.417	-4.697
S. aureus 2 S. aureus 2	2.1/4	-2.290	-5.019	-7.201	-4.841	3.677	-10.628	-7.351	-12.011	-8.398	-4.8/0	-10.797
S. aureus 2	3.160	-2.763	-3.879	-4.724	-1.601	5.067	-3.000	0.608	-0.465	0.241	9.193	-2.255
S. aureus 2	1.358	-3.189	-5.135	-7.714	-3.587	3.794	-6.997	-6.720	-6.512	-6.174	-0.713	0.307
S. aureus 2	1.638	-2.347	-3.961	-7.544	-2.189	4.397	-6.122	6.840	5.471	5.726	4.977	-2.286
S. aureus 3 S. aureus 3	-5.865	-3.670	-4.917	-13.351	-2.174	2.555	4.731	-3.809	-7.542	-35.229	2.707	-7.387
S. aureus 3	-7.636	-3.414	-5.580	-16.476	-3.339	2.460	2.001	-4.236	-6.604	-43.923	-2.720	-10.639
S. aureus 3	-7.543	-5.174	-5.403	-13.903	-2.492	3.774	1.412	-2.156	-2.684	-28.690	3.233	-2.985
S. aureus 3	-4.125	-4.443	-5.724	-12.500	-3.087	3.177	3.707	2.865	1.992	-14.535	6.166	-3.355
MRSA	-0.158	-8.271	-6.727	-12.405	-6.392	2.081	1.818	8.144	-11.273	-0.086	-7.120	0.140
MRSA	0.267	-12.552	-5.718	-17.112	-7.229	2.071	0.231	0.857	-10.571	-20.304	-7.634	-7.077
MRSA	0.977	-9.866	-5.290	-12.102	-5.587	2.090	-0.662	8.482	-11.435	-4.430	-4.292	-7.035
MRSA	-0.937	-10.219	-5.726	-10.840	-7.970	2.658	-2.321	1 482	4.492	-0.197	-0.524	-1.081
MRSA	-0.382	-9.180	-6.623	-12.052	-5.749	2.253	-0.652	3.842	-4.460	-7.302	-1.095	-1.926
L. monocytogenes	-0.157	-18.178	-7.341	-9.585	-6.692	1.433	-5.668	4.655	-11.912	-12.298	-12.148	0.211
L. monocytogenes	-0.880	-15.425	-8.720	-8.859	-8.552	0.279	-2.064	11.326	-5.372	2.782	-5.277	-3.705
L. monocytogenes	-0.366	-20.132	-9.012	-9.490	-4.837	1.529	-3.038	-1.034 8.265	-10.224	-13.337	-5.858	-1.137
L. monocytogenes	1.814	-21.750	-5.831	-9.804	-7.357	0.271	0.853	6.526	3.706	5.630	-3.726	3.210
L. monocytogenes	-0.950	-17.416	-9.309	-9.933	-7.784	1.108	-2.121	2.522	-2.073	-12.651	-6.374	5.630
E. faecalis	1.168	-29.248	-4.616	-32.002	-3.837	0.247	9.838	12.789	-0.987	9.152	2.043	-6.859
E. faecalis	0.389	-28.490	-4.010	-34.574	-2.264	-0.779	10.789	-1.426	0.293	9.662	-6.073	-7.038
E. faecalis	-1.902	-24.347	-6.623	-31.732	-3.337	-0.155	7.293	10.530	3.265	6.247	1.327	1.269
E. faecalis	-2.475	-28.263	-6.385	-37.779	-1.825	0.769	4.062	5.797	-6.540	5.158	-6.213	1.460
E. faecalis B. subtilis	0.094	-30.236	-2.589	-31.412	-3.013	-0.694	5.710	4.733	-1.046	9.718	1.532	0.814
B. subtilis	-7.862	-16.813	-16.250	-15.636	-3.502	1.068	-23.694	1.878	-10.895	-24.144	-2.765	-7.929
B. subtilis	-10.403	-20.121	-15.693	-20.119	-3.468	2.863	-17.676	2.074	-17.375	-37.277	-6.218	-11.084
B. subtilis	-9.515	-15.381	-16.400	-16.411	-4.064	0.945	-8.706	2.412	-5.766	-23.307	1.903	0.925
B. Subtilis B. subtilis	-10.945	-12.944	-15.889	-10.033	-4.185	1.184	-0.070	4.481	-4.232	-18.070	3,404	-0.978
S. mutans	-18.978	-11.298	-6.933	-40.914	-15.423	-3.392	-15.033	-14.633	-6.057	-24.021	-2.504	-30.311
S. mutans	-20.227	-10.487	-9.245	-38.156	-16.470	-1.958	-3.698	-10.037	-3.576	-20.029	-2.645	-10.465
S. mutans	-20.592	-9.696	-9.395	-38.602	-14.917	-4.121	-18.789	-7.643	-11.365	-28.459	-5.491	-31.053
S. mutans	-20.703	-12.514	-9.309	-39.800	-14.375	-2.938	-4.988	-12.789	-5.097	-27.059	-4.180	-16.371
S. mutans	-21.138	-8.294	-8.989	-39.569	-14.875	-3.429	-1.507	-10.076	-0.702	-16.624	-0.549	-14.805
E. coli	-50.363	-35.119	-41.424	-37.835	-21.518	-8.396	1.031	20.702	1.338	14.792	7.135	2.774
E. coli E. coli	-50.447	-46.966	-45.817	-48.829	-20.334	-5.983	1.286	13.050	-0.034	6.112	4.467	1.409
E. coli	-43.363	-35.259	-34.264	-34.241	-18.938	-7.786	5.562	22.625	2.359	13.437	6.308	3.895
E. coli	-46.431	-45.087	-43.981	-44.261	-17.792	-7.982	1.670	16.350	-8.767	6.477	7.195	5.114
E. coli	-49.548	-34.532	-40.144	-34.538	-17.823	-8.415	2.411	20.461	0.624	13.440	7.714	2.619
E. con 1 E. coli 1	-84.440	-49.822	-20.488	-29.208	-16 306	-7.333	1.516	6.409	-2.450	-3.583	-30.284	5.473
E. coli 1	-85.118	-50.536	-29.168	-28.385	-16.753	-4.805	0.546	0.198	-2.526	-5.084	-28.989	-1.578
E. coli 1	-84.002	-47.667	-27.419	-28.316	-14.040	-5.514	0.380	0.251	-0.390	-0.203	-25.082	2.240
E. coli 1 E. coli 1	-/5.801	-40.598	-22.253	-26.426	-14.941	-7.095	3.154	4.569	1.783	2.827	-21.793	3.098
E.coli BL21	-11.629	-34.707	-33.466	-18.805	-20.757	-44.555	-0.073	-1.640	-0.899	-1.303	2.091	-5.162
E.coli BL21	-18.313	-42.187	-37.273	-28.041	-20.634	-39.361	-5.466	1.912	-4.755	-11.772	-1.321	3.704
E.coli BL21	-14.084	-35.036	-31.057	-21.272	-19.825	-45.679	-4.406	9.604	-3.944	-1.728	1.057	-7.399
E.coli BL21	-16.592	-31.097	-31.512	-28.038	-14./12	-44.133	-4.061	5.002	-3.113	-12.316	-0.849	0.861
E.coli BL21	-11.527	-32.462	-32.238	-21.564	-15.424	-44.970	1.096	2.424	-0.128	-1.471	0.668	-4.310
P. aeruginosa	-17.497	-37.843	-26.254	-35.765	-22.134	-19.363	-10.829	-23.496	-2.740	-12.271	0.342	-6.723
P. aeruginosa P. aeruginosa	-30.400	-37.739	-23.146	-37.222	-23.254	-20.716	-4.291	-11.832	2.066	-10.730	-0.518	-13.622
P. aeruginosa	-15.973	-39.789	-23.021	-35.897	-19.547	-16.504	-6.864	-15.945	-0.110	-17.957	1.560	1.290
P. aeruginosa	-21.185	-33.905	-21.865	-37.007	-19.587	-20.084	-8.326	-5.574	0.827	-18.489	0.970	1.937
P. aeruginosa	-17.039	-33.994	-24.866	-32.043	-18.738	-20.379	-7.650	-22.279	-0.997	-16.662	1.240	-3.626
P. fluorescens P. fluorescens	-49.242	-37.650	-16.952	-28.484	-33.337	-3.016	0.832	0.960	-3.454	-4.758	5.970	5.869
P. fluorescens	-50.857	-34.410	-23.472	-30.421	-30.348	-3.629	3.127	7.953	-2.253	-6.565	5.858	3.413
P. fluorescens	-43.667	-34.681	-20.294	-24.456	-27.481	-2.221	3.447	6.534	0.687	-7.188	7.504	5.157
P. fluorescens	-48.439	-40.500	-20.745	-28.084	-27.595	-1.958	-0.376	4.077	-2.570	-21.813	5.792	6.615
P. Juorescens S. paratyphi R	-46.385	-35.830	-17.280	-27.358	-20.134	-3.027	0.614	8.523	-3.879	-8.744	5 539	5.546 -0.509
S. paratyphi B	-19.100	-17.857	-7.269	-27.666	-13.556	-12.083	1.042	6.317	-3.320	-14.078	5.790	-1.101
S. paratyphi B	-20.561	-19.133	-10.874	-31.395	-13.291	-8.242	-0.210	-7.266	-5.122	-30.432	5.556	0.729
S. paratyphi B	-19.356	-18.315	-13.386	-27.502	-8.202	-11.404	1.954	-4.731	-2.488	-36.786	5.810	3.424
S. paratyphi B S. paratyphi B	-19.636	-19.071	-9.145	-29 610	-9.274	-8.501	0.676	-1.250	-0.096	-32.817	5 447	3.661
Sh. flexneri	-20.011	-29.255	-17.428	-23.001	-13.236	-45.471	-5.394	7.723	-14.663	-14.468	8.250	-4.030
Sh. flexneri	-18.265	-29.373	-17.682	-30.313	-12.482	-41.777	-9.299	1.753	-34.226	-24.540	4.210	-1.184
Sh. flexneri	-10.972	-35.694	-15.630	-24.837	-12.257	-45.599	-4.638	8.483	-10.460	-12.729	5.930	-1.150
Sh. flexneri	-15.585	-28.470	-12.249	-20.941	-7.346	-45.075	-4.082	-2.554	-15.595	-12.230	6.237	-2.014
Sh. flexneri	-13.449	-28.362	-18.281	-23.841	-8.660	-47.080	-3.488	6.160	-14.761	-15.299	8.658	-0.814
E. sakazakii	-58.518	-23.332	-12.279	-54.949	-9.380	-40.670	-1.833	-8.018	-3.068	-19.011	4.216	3.190
E. sakazakii	-59.295	-19.905	-10.112	-52.494	-12.405	-42.231	-0.075	4.580	1.434	-13.654	7.630	2.772
E. sakazakii E. sakazakii	-56 707	-21.362	-12.095	-52.480	-10.912	-38.003	-2.795	-5.003	-1.912	-22.204	4.513	5,726
E. sakazakii	-47.579	-23.159	-7.933	-48.908	-5.340	-39.366	2.018	5.954	0.623	-6.202	6.349	3.677
E. sakazakii	-56.302	-20.178	-12.848	-52.982	-4.382	-36.634	-0.320	-9.006	0.062	-17.491	5.818	6.515
E. cloacae	-7.025	-19.418	-9.524	-13.587	-8.146	-31.570	0.560	-0.687	2.948	4.428	4.315	-30.639
E. cloacae E. cloacae	-8.085	-19.945	-9.152	-17.533	-8.256	-33.663	-4.389	-0.938	-0.494	6.942	7.815	-20.343
E. cloacae	-4.775	-17.122	-12.057	-11.895	-2.402	-32.021	-3.043	-2.118	6.915	6.604	8.440	-28.107
E. cloacae	-8.909	-18.827	-11.365	-16.903	-3.945	-28.790	-5.740	-6.701	0.308	-10.085	4.914	-27.473
E. cloacae	-6.256	-19.082	-9.395	-14.896	-3.664	-31.550	1.545	0.167	2.147	6.447	4.349	-28.883

	Vanco@AuNC	's Bacit@AuNC	s Aeros@AuNCs	Colistin@AuN(e DEI@AnNCe	Teico@AuNC	DMC_P@AnNCs	DMAE-T@AnNCe	DMA-BA@AnNCe	DMA_UD@AnNCs	DMA-N@AnNCe	DMA_BT@AnNCs
S. aureus 1	-37.301	1.519	-9.709	-12.746	-10.812	1.801	-0.791	-1.389	-53.070	-8.139	3.397	-3.160
S. aureus 1	-38.141	1.165	-9.186	-11.973	-10.250	2.451	0.706	-0.882	-48.662	-6.925	2.779	-0.923
S. aureus 1 S. aureus 1	-34.509	2.925	-2.832	-0.473	-10.377	2.767	-0.022	-1.193	-49.335	-2.827	-5.680	-0.489
S. aureus 1	-37.181	1.566	-10.819	-11.818	-9.924	3.493	-0.061	-0.227	-41.681	-6.594	-4.791	-1.329
S. aureus 1	-37.775	5.635	-4.623	-5.641	-10.376	3.525	2.000	1.464	-34.166	-2.824	-2.595	-0.807
S. aureus 2 S. aureus 2	-44.603	4.539	-4.651	-5.651	-3.217	6.785	-2.515	-2.288	-45.014	2.147	-5.498	-4.055
S. aureus 2	-46.606	2.703	-7.899	-5.738	-2.662	6.597	-1.027	-2.091	-42.871	-5.612	-5.667	-0.609
S. aureus 2	-43.174	3.586	-4.620	-5.543	-2.558	6.650	-0.220	0.062	-39.798	1.849	-4.329	-0.568
S. aureus 2 S. aureus 2	-40.989	5.015	-5.830	-3.985	-2.600	7.789	0.868	-1.041	-30.700	-5.367	-4.588	0.575
S. aureus 3	-32.771	3.640	-9.357	-7.197	-4.292	4.980	-2.059	-4.381	-36.830	-6.838	-5.210	-1.880
S. aureus 3	-32.466	3.777	-8.851	-6.625	-4.284	5.168	-0.507	-2.588	-33.799	-5.515	-4.594	-0.543
S. aureus 3 S. aureus 3	-32.823	5.405	-0.983	-5.179	-4.500	4.808	-0.019	-0.881	-27.870	-0.115	-2.464	-0.796
S. aureus 3	-33.658	2.835	-6.944	-6.144	-4.106	6.371	-0.187	-1.611	-33.010	-4.486	-5.298	0.231
S. aureus 3	-32.255	4.876	-2.632	-3.704	-3.968	5.847	-0.083	0.361	-28.613	-0.201	-2.802	-0.584
MRSA	-34.304	5.941	0.479	-4.806	-7.458	4.929	-2.935	1.036	-43.487	-6.208	-3.899	-5.736
MRSA	-38.136	3.030	-8.428	-9.115	-7.425	5.119	-2.604	-1.129	-40.749	-6.764	-7.254	-2.810
MRSA	-39.036	6.289	0.535	-6.909	-7.364	5.382	-1.489	1.674	-36.448	-5.326	-3.244	-3.811
MRSA	-37.000	5.743	0.382	-6.003	-7.246	6.164	-0.656	2.505	-38.036	-3.506	-3.769	-2.988
L. monocytogenes	-47.312	0.396	-8.835	-10.938	-4.838	5.981	-1.513	-4.952	-47.914	-6.451	-10.734	-3.327
L. monocytogenes	-45.754	0.218	-8.164	-10.599	-4.475	6.740	1.467	-2.247	-42.997	-5.959	-8.365	-1.734
L. monocytogenes	-45.304	5.450	-4.931	-3.891	-4.566	6.048	2.549	-0.107	-36.778	-0.537	-7.096	-1.250
L. monocylogenes L. monocylogenes	-40.134	1.374	-9.626	-9.000	-4.840	7.421	1.299	-2.450	-43.823	-5.839	-7.800	-2.007
L. monocytogenes	-45.498	5.306	-3.178	-5.825	-4.543	7.389	3.174	-1.692	-32.527	-1.451	-7.128	-0.947
E. faecalis	-54.102	9.754	-5.748	-9.478	-5.780	8.460	-1.015	-7.117	-40.541	-4.396	-5.001	-5.524
E. Jaecalis E. faecalis	-51.646	9.575	-11 939	-8.442	-5.012	8.736	0.184	-3.233	-36.439	-3.595	-5.749	-1.598
E. faecalis	-50.704	9.365	-6.999	-8.425	-5.919	8.438	2.129	-3.974	-38.199	-3.604	-5.611	-2.226
E. faecalis	-47.672	8.863	-7.833	-5.905	-5.013	8.625	0.869	-3.326	-39.548	-2.765	-3.985	-0.939
E. faecalis	-48.701	4.385	-11.410	-6.262	-5.055	8.343	0.522	-5.063	-49.195	-4.458	-7.184	-0.386
B. subtilis	-45.194	3.635	-8.743	-5.720	-7.056	6.832	0.126	-2.794	-43.782	-5.178	-11.657	-0.056
B. subtilis	-43.960	6.520	-5.810	-5.021	-7.099	6.446	-0.338	-0.052	-39.104	0.502	-5.457	-0.848
B. subtilis	-44.670	2.042	-8.739	-7.279	-7.206	7.059	-0.360	-2.778	-41.822	-5.233	-11.977	-0.372
B. subtilis	-43.485	6.254	-6.161	-3.627	-6.792	7.272	-0.308	0.085	-39.781	0.229	-6.738	-0.317
S. mutans	-38.048	6.047	-7.592	-4.692	-4.430	5.664	4.030	2.171	-29.895	-7.912	-13.340	-9.314
S. mutans	-37.210	6.208	-6.798	-3.814	-4.344	6.579	4.656	2.698	-26.574	-2.005	-9.998	-3.137
S. mutans S. mutans	-39.033	5.903	-6.554	-5.950	-4.234	6.495	4.202	2.758	-29.939	-2.386	-11.074	-3.668
S. mutans	-37.022	5.795	-5.421	-3.666	-4.181	7.541	4.655	2.440	-26.011	-3.585	-7.057	-2.015
S. mutans	-39.182	5.739	-7.574	-5.331	-4.282	7.500	3.885	2.297	-29.086	-9.263	-10.515	-1.373
E. coli E. coli	-38.721	5.850	-12.606	-0.445	-8.804	5.238	0.669	0.568	-35.124	-0.152	-5.357	-0.003
E. coli	-44.188	5.721	-14.999	-9.015	-8.851	5.712	-0.505	-0.367	-42.824	-3.953	-4.796	-0.228
E. coli	-38.721	5.856	-12.606	-6.443	-8.819	5.238	0.696	1.304	-36.728	0.528	-5.105	0.304
E. coli E. coli	-35.869	7.008	-8.650	-3.503	-7.034	6.201	0.931	1.227	-38.319	-0.114	-4.835	0.713
E. coli 1	-65.582	-1.152	-10.963	-13.676	-5.351	2.537	21.977	0.055	-47.560	-9.497	-7.637	1.237
E. coli 1	-65.889	-1.918	-10.614	-14.738	-5.713	3.085	21.940	0.094	-45.316	-8.821	-6.654	1.639
E. coli 1 E. coli 1	-63.462	-3.332	-3.689	-14.039	-6.053	1.916	21.799	4.962	-35.603	-7.894	-6.092	1.082
E. coli 1 E. coli 1	-54.083	-0.774	-7.987	-8.392	-5.040	4.283	12.705	1.605	-44.784	-7.778	-5.887	1.177
E. coli 1	-53.559	-1.881	-4.245	-8.029	-4.842	4.510	12.782	3.875	-36.278	-6.152	-5.853	1.275
E.coli BL21	-67.422	-3.397	-9.990	-11.372	-7.191	4.824	8.143	6.138	-44.721	-1.205	-5.351	-2.229
E.coli BL21	-67.169	-2.931	-12.581	-10.309	-6.924	4.855	7.728	4.726	-43.721	-5.253	-5.823	-2.356
E.coli BL21	-67.422	-3.397	-9.990	-11.372	-6.877	4.824	7.193	7.125	-42.419	-1.465	-5.045	-1.872
E.coli BL21	-56.611	0.394	-7.339	-6.638	-5.499	6.960	6.811	6.842	-40.601	-2.982	-3.991	-1.615
P. aeruginosa	-58.364	-0.251	-14.613	-0.224	-15.557	2.909	3.455	-6.001	-43.829	-7.946	-5.794	-6.948
P. aeruginosa	-57.067	-0.023	-14.824	-9.186	-15.334	1.954	3.866	-2.581	-40.637	-6.839	-5.140	-6.692
P. aeruginosa	-59.707	0.241	-14.892	-7.310	-15.375	1.832	4.034	-2.073	-37.221	-2.733	-5.224	-6.863
P. aeruginosa P. aeruginosa	-38.304	-0.251	-14.013	-9.767	-14.013	2.909	3.610	-3.307	-41.2/4	-6.247	-5.596	-6.068
P. aeruginosa	-48.255	0.674	-10.069	-4.909	-14.162	2.723	3.267	-0.249	-37.365	-2.880	-4.953	-6.004
P. fluorescens	-47.254	-1.345	-6.983	-12.062	-6.284	5.272	2.044	-2.373	-50.293	-4.614	-4.818	-1.841
P. fluorescens P fluorescens	-41.575	-2.648	-10.101	-12.384	-5.206	5.076	3.008	-2.902	-47.390	-5.405	-4.455	-0.621
P. fluorescens	-47.254	-1.345	-6.983	-12.062	-5.214	5.272	3.054	-3.255	-46.605	-3.419	-4.999	-0.823
P. fluorescens	-41.748	-0.981	-4.959	-8.217	-5.019	5.926	3.332	-2.523	-46.457	-4.392	-4.691	-0.061
P. fluorescens S. paratyphi R	-41.625	-4.614	-0.307	-8.329	-4.926	0.053	2.384	-1.781 0.184	-48.056	-14.281	-5.319	-0.264
S. paratyphi B	-56.765	-5.036	8.100	-11.686	-6.384	2.843	4.170	0.507	-48.601	-18.305	-8.217	-0.254
S. paratyphi B	-51.109	-1.701	2.876	-11.510	-6.867	2.406	4.645	3.702	-36.879	-13.641	-6.143	-0.515
S. paratyphi B	-57.801	-3.739	7.719	-11.041	-6.068	2.768	4.398	0.197	-47.454	-17.379	-8.977	-0.281
S. paratyphi B	-50.547	1.886	3.403	-7.253	-6.341	5.149	3.880	3.285	-32.939	-13.107	-5.827	-0.355
Sh. flexneri	-56.899	3.815	-13.915	-11.756	-13.405	4.866	4.634	-3.763	-29.103	-6.699	-7.760	-2.660
Sh. flexneri	-61.865	4.358	-12.363	-11.802	-12.843	5.175	5.371	-3.173	-30.380	-3.053	-7.130	-0.505
Sh. Jiexneri Sh. flexneri	-56.899	3.388	-13.231	-11.080	-12.525	4.866	4.187	-5.8/2	-33.869	-9.455	-7.394	-0.794
Sh. flexneri	-50.067	3.948	-10.797	-8.408	-11.898	7.405	3.969	-0.846	-32.012	-4.752	-6.164	0.237
Sh. flexneri	-52.737	3.864	-11.862	-8.061	-11.755	6.961	4.117	-5.396	-43.825	-8.125	-7.764	0.371
E. sakazakii E. sakazakii	-40.521	5.020	-17.054	-7.742	-15.584	4.566	7.379	-0.415	-41.034 -36.818	-2.422	-9./18	-0.390
E. sakazakii	-40.734	4.389	-15.383	-10.337	-14.935	4.029	7.403	2.760	-35.029	-1.534	-6.134	-0.568
E. sakazakii	-40.521	5.626	-17.054	-7.885	-14.838	4.366	7.172	-1.684	-38.687	-2.901	-6.728	-0.817
E. sakazakii E. sakazakii	-39.725	5.687	-13.569	-6.068	-14.493	5.253	7.117	-1.092	-37.477	-1.872	-5.826	0.097
E. cloacae	-44.505	5.753	-8.335	-9.845	-8.719	12.769	3.719	0.327	-33.716	-1.070	-12.637	-4.544
E. cloacae	-41.433	5.829	-8.822	-7.620	-8.427	12.960	3.312	3.362	-33.294	-0.854	-8.814	-2.433
E. cloacae	-45.349	5.113	-10.682	-8.901	-8.093	12.503	3.460	1.523	-35.939	-4.658	-9.636	-1.025
E. cioacae E. cloacae	-44.505	5.755	-8.335	-9.845	-8.258	5,326	3.118	2.835	-33.584	-2.470	-8.342	-2.000
E. cloacae	-42.436	5.008	-8.446	-9.795	-7.849	5.820	3.729	2.787	-32.605	-5.105	-10.987	-1.052

Table S5. Fluorescent response patterns of training set in the detection of bacterial samples in serum.

	Vanco@AuNC	s Bacit@AuNCs	Aeros@AuNCs	Colistin@AuNC	s PEI@AuNCs	Teico@AuNC	DMC_P@AnNC	s DMAE_T@AnNCs	DMA-BA@AnNCs	DMA_HP@AuNCs	DMA-N@AuNCs	DMA_BT@AnNCs
S. aureus 1	-1.876	-0.822	-20.841	-7.605	1.545	-2.299	-1.143	-14.094	-10.485	-2.229	-4.256	-9.566
S. aureus 1	1.075	-0.200	-18.381	-5.764	2.507	2.497	1.299	-10.530	-5.913	2.117	-1.910	-4.408
S. aureus 1	5.148	1.046	-14.805	-3.928	1.658	0.902	0.557	-8.167	-6.009	3.092	-1.7/4	-4.011
S. aureus 1	2.790	0.057	-14.940	-3.817	2.081	2.426	1.671	-8.899	-4.923	1.689	-1.011	-4.680
S. aureus 1	3.998	2.921	-12.582	-2.937	1.253	2.626	2.646	-9.063	-3.489	4.403	-1.887	-3.094
S. aureus 2	1.758	-0.471	-12.445	-3.867	-1.508	-11.926	0.956	-12.612	2.691	6.354	-1.970	-2.211
S. aureus 2	2.433	1.165	-7.735	-1.699	-1.686	-7.140	1.732	-7.320	6.630	6.463	-0.154	2.643
S. aureus 2 S. aureus 2	4.876	-0.574	-9.387	-2.111	-2.430	-7.529	0.300	-9.672	6.514	6.057	-0.485	2.173
S. aureus 2	3.952	2.197	-9.096	-0.461	-2.415	-5.023	0.647	-7.500	6.437	5.248	0.951	3.504
S. aureus 2	2.843	0.037	-9.159	-2.974	-1.820	-5.027	-0.489	-11.417	5.800	2.440	-0.437	1.777
S. aureus 3	-2.010	-2.585	-2.499	-0.924	0.441	-0.307	0.584	-13.102	2.059	0.064	-2.099	-4.537
S. aureus 3 S. aureus 3	-0.397	-0.734	-1.388	1.477	-0.398	0.627	1.585	-9.926	0.073	3.800	-0.024	-0.339
S. aureus 3	-0.436	-1.251	-0.629	0.515	0.450	0.271	0.873	-10.576	5.626	3.242	0.244	-0.457
S. aureus 3	1.921	2.069	0.715	1.362	0.704	2.543	1.689	-7.852	5.419	3.393	0.188	0.287
S. aureus 3	1.513	1.967	1.729	2.419	0.820	1.640	1.186	-4.534	6.281	4.312	0.763	-0.097
MRSA	-1.559	0.374	-1.588	-5.969	0.225	-3.279	-0.666	0.350	-10.853	1.130	-4.131	-3.895
MRSA	-0.617	0.129	-3 563	-4.653	1.353	-1.334	2.076	-1.807	-20.640	2.830	-3.278	-1.538
MRSA	-0.056	1.124	-1.682	-5.160	0.730	-2.122	1.693	0.482	-9.948	3.538	-2.175	-0.707
MRSA	2.226	1.332	0.181	-3.465	0.536	-0.016	4.264	0.647	-7.069	4.657	-1.665	-0.132
MRSA	0.644	1.664	-2.733	-5.297	-0.013	-0.639	2.158	-0.648	-20.046	4.032	-2.713	-0.738
L. monocytogenes	-2.155	-0.439	-3.670	0.604	1.809	-0.733	-3.390	-2.618	0.422	2.407	-2.184	-2.461
L. monocytogenes	-0.084	1 964	-1.673	3.096	2.159	0.461	0.343	-1.185	3 805	4 197	-1.224	-1.520
L. monocytogenes	-1.260	0.852	-2.397	1.979	2.217	0.096	-0.103	-2.176	1.637	3.841	-2.643	-0.522
L. monocytogenes	0.423	1.619	0.025	2.775	2.250	2.359	1.035	-1.209	3.464	3.455	-0.403	-1.182
L. monocytogenes	1.270	1.946	1.198	2.832	2.657	0.923	0.352	-1.258	4.725	4.616	-0.486	-0.976
E. faecalis E. faecalis	-2.305	-0.336	-3.722	-0.526	-5.4//	-0.064	-0.857	-0.404	5.050	5.554	-0.896	-3.534
E. faecalis	-2.365	0.178	-4.133	-0.635	-3.295	1.476	0.189	-0.306	2.089	4.400	-0.288	-1.550
E. faecalis	-0.503	0.467	-2.576	1.360	-3.205	1.477	0.701	0.938	4.427	6.487	-0.135	-0.918
E. faecalis	-0.740	1.978	-0.366	1.409	-3.831	2.826	1.157	2.724	4.248	6.741	0.754	-0.053
E. faecalis	-1.080	-0.976	-1.994	-0.726	-3.262	2.204	0.398	-0.845	3.666	5.401	-1.061	-0.547
B. subtilis	0.418	0.805	-0.131	-5.461	2.319	-0.722	2.421	-1.504	1.977	5.259	-2.925	5.598
B. subtilis	4.714	0.501	-0.956	-3.561	1.403	-0.021	2.517	1.844	3.399	7.048	-0.893	4.214
B. subtilis	1.373	0.447	-4.695	-5.514	2.071	1.057	2.957	-0.460	2.684	5.905	-1.833	4.762
B. subtilis	2.370	2.131	-5.014	-3.379	2.185	0.760	3.847	1.695	2.981	6.346	-0.330	4.062
B. subtilis	3.069	2.689	-2.435	-1.446	1.061	0.691	4.399	1.844	4.274	7.133	-1.455	4.695
S. mulans	1.886	-0.427	-3.131	-4.332	-1.022	2 163	1 225	-3.441	4.439	4.172	2 699	-2.02.5
S. mutans	1.223	-0.657	-9.605	-5.749	-1.605	0.465	0.736	-3.775	1.350	4.680	1.876	-0.777
S. mutans	1.395	1.783	-2.859	-4.676	-0.985	1.772	2.462	-1.174	4.087	5.964	2.162	0.268
S. mutans	3.572	2.130	-6.024	-1.653	-1.939	2.705	2.993	0.471	5.376	5.932	3.416	0.749
S. mutans	0.113	1.103	-9.084	-4.680	-1.000	5.434	1.243	-3.610	2.8/8	3.759	2.517	-0.510
E. coli	-1.400	2.528	-5.866	0.113	-1.192	-4.817	6.265	5 559	4.233	6.787	-0.113	2.798
E. coli	-4.383	0.429	-7.053	-1.640	-0.157	-4.395	4.191	-0.457	0.418	4.023	-0.093	1.971
E. coli	-2.207	2.603	-5.395	-0.158	-1.552	-3.351	5.795	6.398	4.050	6.499	-0.299	2.361
E. coli	2.435	2.591	-3.980	1.694	-1.038	-2.653	5.812	3.272	4.041	6.515	-0.073	2.715
E. coli 1	-3.737	0.842	-4.797	-8 221	-0.525	-2.957	3.373	-1.810	-3.413	3.900	0.054	-1.514
E. coli 1	2.182	-0.330	-6.313	-3.653	2.309	-2.684	3.004	-5.232	-0.053	3.451	0.623	-0.401
E. coli 1	3.148	0.534	-4.822	-1.964	1.961	-4.713	3.027	3.932	2.379	5.219	0.455	-0.417
E. coli 1	0.874	-0.256	-7.111	-4.012	2.698	-4.406	2.213	-4.810	-0.020	3.050	0.177	0.159
E. coli 1 E. coli 1	3.420	0.309	-4.613	-0.949	3.204	-1.495	2.732	-5.087	1.325	3.518	0.618	0.267
E. coli BL21	-4.902	-0.498	-3.760	-5.175	-2.549	-3.729	1.536	-2.217	0.120	4.433	-0.083	0.288
E.coli BL21	-2.411	-0.064	1.379	-1.238	-0.809	-0.241	1.744	1.760	1.313	5.099	0.786	1.386
E.coli BL21	-4.767	-1.756	-5.021	-3.785	-0.704	-0.471	0.605	-1.556	-2.043	3.761	0.184	1.505
E.coli BL21	-2.686	-0.003	-1.687	-1.695	-1.740	-0.716	2.940	3.418	0.444	4.243	-0.071	1.286
E.coli BL21	-0.803	0.223	-2 730	-1.741	-0.967	1.015	1.733	-1 250	-1 493	4 4 50	-0.555	0.661
P. aeruginosa	-4.497	-6.954	-3.623	-2.333	4.001	-6.852	-0.936	-4.696	2.946	6.168	1.126	-2.019
P. aeruginosa	0.485	-4.081	-0.607	2.211	2.989	-2.120	1.030	-1.965	4.127	6.710	2.911	-1.257
P. aeruginosa	0.099	-2.910	1.009	1.393	3.494	-2.752	2.008	-1.356	5.076	7.050	1.778	-1.386
P. aeruginosa P. aeruginosa	-0.420	-5.536	-0.408	1.710	3.635	-2.093	0.495	-2.560	3.773	6.671	1.973	-1.288
P. aeruginosa	3.894	-3.918	2.723	3.429	4.495	-0.442	2.562	-1.587	6.551	7.599	1.529	-1.732
P. fluorescens	-1.379	-0.581	-2.081	-4.849	-1.019	-3.622	0.570	-3.214	2.601	3.064	1.597	-2.253
P. fluorescens	-0.992	1.302	-2.167	0.316	-0.256	-1.234	1.375	-2.767	4.137	4.130	3.284	-1.415
P. fluorescens	-1.271	-0.806	-3.879	-1.948	-0.488	-1.923	-1.056	-5.594	1.032	2.235	3.208	-1.500
P. fluorescens	0.367	1.046	-0.177	0.710	0.626	-0.215	1.341	-1.292	3.806	3.895	3.725	-0.892
P. fluorescens	0.353	-1.119	-1.638	-0.470	0.832	-0.723	0.042	-4.640	1.900	2.679	2.770	-0.755
S. paratyphi B	-13.842	-3.856	-5.165	-4.218	0.261	-1.100	-0.409	-2.640	2.806	2.573	-4.584	1.670
S. paratyphi B	-11.691	-0.157	-1.205	-1.077	1.002	1.972	2.159	-0.293	3.448	4.238	-3.309	2.777
S. paratyphi B	-10.780	0.736	-0.807	1.645	1.042	1.238	1.370	0.214	3.069	5.244	-1.945	1.847
S. paratyphi B	-10.984	0.193	-0.338	1.517	1.698	1.988	3.023	0.876	4.167	5.131	-3.126	2.527
S. paratyphi B	-12.440	1.676	-0.096	2.115	1.446	2.447	2.869	5.472	5.239	5.618	-1.975	1.957
Sh. flexneri	-3.892	-0.511	-8.883	-2.657	-1.192	-10.043	-2.464	-3.319	1.550	4.070	-1.379	-0.110
Sh. flexneri Sh. flexneri	-0.042	-1.627	-2.421	-0.565	0.225	-6.050	1.806	1.258	2.492	7.923	-0.859	1.358
Sh. flexneri	-1.275	-0.621	-3.826	-0.197	1.019	-6.666	3,766	-0.739	3.002	7.295	-1.941	0.549
Sh. flexneri	1.328	0.177	-3.976	0.558	1.352	-4.740	2.935	-0.442	4.017	6.729	-0.762	1.828
Sh. flexneri	-1.492	-1.302	-5.507	-1.836	0.400	-5.042	0.475	-3.050	1.727	4.301	-1.540	1.019
E. sakazakii	-2.858	-6.085	-9.890	-14.201	0.566	-4.393	-3.154	-6.944	-6.903	0.175	-0.552	0.728
E. sakazakii E. sakazakii	3 500	-3.790	-0.031	-1.275	1.985	-1.167	0.840	-0.210	-2.123	3.113	1.281	2.028
E. sakazakii	0.193	-2.984	-7.154	-7.764	3.007	-1.303	1.036	-7.802	-1.622	2.726	-0.347	1.537
E. sakazakii	2.204	-1.745	-6.325	-5.987	2.657	0.758	-0.644	-5.975	-0.307	3.965	0.641	2.731
E. sakazakii	3.633	-1.209	-3.390	-3.866	2.501	-0.939	-0.696	-2.484	1.487	5.914	0.444	2.666
E. cloacae E. cloacae	-11.223	-0.217	-7.386	-6.594	-3.974	-4.063	-1.751	2.101	1.545	1.520	-3.152	1.496
E. cloacae	-9,148	-1.966	-4.248	-4.554	-2.018	0.522	-2.344	-1.989	-2.990	1.399	-4.348	3,315
E. cloacae	-5.519	-0.468	-3.838	-2.202	-1.043	-0.385	-0.753	6.042	0.210	3.719	-2.717	2.670
E. cloacae	-6.860	2.329	-3.556	-1.737	-0.647	1.810	0.913	6.745	1.406	4.938	-1.679	3.591
E. cloacae	-7.965	-0.892	-10.990	-3.064	-0.638	1.968	-1.510	0.024	-1.219	3.456	-3.424	2.489

Table S6. Fluorescent response patterns of training set in the detection of bacterial samples in urine.

	Vanco@AuNC	e Bacit@AuNCe	A arrow@AuNC	Colistin@AuNC	· DEL@AuNC:	Taico@AuNCe	DMC-P@AuNC	DMAE T@AuNCe	DMA-BA@AuNC	DMA-HD@AuNC	DMA-N@AuNC	DMA-RT@AuNC
3+4	1 035	1 168	0.087	6 774	2 101	11 483	6 971	5 154	1 081	28 003	3 742	0 471
2+4	-1.933	-1.100	-0.087	7.522	-2.191	0.102	-0.971	-3.134	5 5 2 1	-26.093	-3.742	-9.4/1
214	-0.998	1.200	1.022	6.970	2.201	9.192	-13.300	-0.301	-0.521	-2.55.32	-2.121	-5.095
3+4	-0.964	-1.200	-1.023	7.500	3.694	12.316	-3.190	-1.630	0.336	-23.918	-4.347	1.555
314	0.067	3.926	0.204	1.300	0.202	10.295	-0.107	12.011	7.492	-18.070	-1.755	-4.575
3+4	-2.594	-2.190	-0.902	1.795	-0.505	10.425	-8.811	-12.911	-7.485	-38.307	-11.105	-5.570
3+4	-2.816	-5.455	-0.182	-1.411	0.873	9.855	-8.827	-10.972	-9.613	-35.244	-8.296	-11.805
4+7	7.505	-9.659	-4.4.51	-9.0.32	0.206	4.22.5	2.297	-4.929	-2.8.51	54.916	-12.526	-26.496
4+7	7.730	-8.266	-7.163	-8.283	-1.146	2.801	2.359	-3.999	-4.357	-38.339	-11.331	-26.189
4+7	8.156	-6.521	-5.442	-6.709	3.621	4.469	3.773	-3.400	1.828	-29.664	-10.770	-20.731
4+7	6.638	-5.638	-7.854	-6.674	2.667	2.943	4.920	-0.684	-8.973	-30.602	-9.547	-22.569
4+7	10.851	0.028	1.447	-2.198	-1.451	1.964	3.078	5.325	11.077	-24.618	-0.952	-23.729
4+7	10.432	-2.377	-0.903	-2.702	-2.295	1.995	-3.580	7.953	4.335	-23.900	0.475	-23.654
7+8	-3.179	-0.261	-2.890	-2.633	0.263	-4.342	12.308	-17.967	12.617	7.009	-13.739	-5.047
7+8	-1.448	-0.155	-1.586	-2.289	0.217	-5.184	9.936	-22.805	11.299	7.049	-13.774	-2.157
7+8	-0.964	0.374	-2.191	-0.625	0.489	-4.368	15.292	-9.567	18.770	10.392	-10.973	-0.317
7+8	1.300	2.005	0.356	0.515	0.978	-3.811	9.580	-10.918	4.754	8.582	-2.006	2.475
7+8	-6.318	-8.679	-9.846	-3.115	0.799	-3.041	7.295	-26.285	7.614	-3.722	-15.995	-2.476
7+8	-5.652	-12.741	-7.835	-2.569	0.786	-2.550	7.979	-21.977	-9.624	-9.855	-20.624	2.681
11+14	-10.402	4.896	3.340	-2.833	3.793	-7.500	4.318	1.675	1.232	-6.932	-14.181	-4.576
11+14	-6.889	3.533	3.215	-4.233	0.603	-8.502	10.078	-0.995	2.492	-0.065	-15.908	-3.502
11+14	-6.089	3 622	3 422	-4 390	3 783	-7 310	8 293	8 049	6.891	1 401	-12 723	0.087
11+14	-8 774	5 205	0.890	-0.926	2 657	-7.011	14 469	2 118	13 967	4 842	-13 933	2 034
11+14	-11 408	-7.909	-4.014	-6.996	3 227	-4.118	9 219	-5.083	-3 280	-13 825	-23 840	-5 124
11+14	11 566	3 726	8 127	6 570	0.286	6.018	8 035	2 820	2 288	0.607	22.373	5 636
15+16	10 760	6 201	2 220	0.394	0.200	12 260	6.335	-2.620	4 511	25 279	4 850	0.205
15116	-19.709	-0.301	-3.239	1.154	-0.808	-12.309	0.320	-0.029	-4.311	-33.378	-4.0.00	0.203
15110	-16.750	-2.373	-4.302	1.134	0.037	-13.637	1.002	-9.70.5	-0.101	-33.080	-3.08.5	0.145
15+16	-14.005	-2.103	-2.353	2.420	0.282	-10.592	10.198	-4.323	1.499	-27.400	-2.459	0.434
15+16	-20.296	1.330	-4.600	2.457	1.120	-11.378	9.785	-0.442	-2.425	-26.256	-4.792	4.575
15+16	-24.319	-7.546	-8.204	-1.706	-0.370	-9.690	2.654	-18.235	-5.098	-45.742	-7.159	4.857
15+16	-25.058	-8.566	-9.340	-1.151	0.614	-10.395	3.256	-15.677	-10.599	-45.657	-11.842	-2.895
11+16	-0.468	-7.695	-11.002	1.064	-5.012	-3.518	-1.486	-26.598	-2.856	-50.072	-13.599	-4.146
11+16	-0.088	-2.713	-13.294	2.860	0.195	-1.413	-0.291	-26.317	-1.529	-51.102	-17.383	-4.512
11+16	-0.008	-4.396	-10.101	1.766	2.614	0.461	3.657	-22.717	3.645	-39.454	-11.163	6.425
11+16	-0.106	-3.619	-11.651	2.520	-1.679	-0.217	5.589	-20.491	-12.892	-44.053	-15.137	-0.864
11+16	1.102	-2.953	-6.649	3.241	-4.788	-5.746	3.307	-20.232	8.075	-34.920	-9.054	-6.185
11+16	-0.440	-2.576	-6.547	4.128	-1.082	-5.300	-1.968	-14.498	-3.011	-37.373	-8.207	-7.065
4+14	-18.819	-4.080	-5.606	2.893	-1.670	11.786	18.259	1.675	11.541	-4.938	5.569	11.603
4+14	-15.340	-5.740	-5.104	0.880	-4.101	9.712	17.260	1.842	5.129	-6.164	4.777	10.798
4+14	-14.548	-6.664	-3.334	3.072	0.176	12.776	18.436	2.311	6.948	-5.059	6.361	11.650
4+14	-15.730	-7.627	-2.680	0.406	-2.108	10.815	18.826	1.311	6.778	-5.859	4.266	10.175
4+14	-16.939	-7.921	-2.182	0.571	-3.303	9.444	18.843	0.996	6.782	-6.559	4.107	10.362
4+14	-17.494	-5.735	-5.025	0.152	0.165	9.344	17.802	-0.005	7.205	-5.705	4.802	9.900
7+15	-9.862	-5.711	-12.094	5.692	-6.973	10.034	17.232	-12.481	7.914	-13.040	5.563	9.805
7+15	-8.347	-6.185	-13.341	4.081	-5.575	8.485	17.221	-14.504	9.290	-10.861	4.672	10.357
7+15	-9 169	-5.845	-10 362	8 715	-2 673	10 717	17.065	-14 434	8 597	-11 127	5 568	10 969
7+15	-7 901	-7.078	-6 294	5 910	-2 316	10.914	17 333	-16 737	7 674	-12 146	5 1 4 3	10 414
7+15	-9 279	-7 903	-6.125	5 1 5 1	-3 299	8.803	17 272	-16.278	7 366	-13 596	4 489	10.081
7+15	-8 498	-7.816	-8 414	5 251	-10 266	9.865	16.974	-13 730	7 252	-12 844	5.022	10.021
8+16	-34 233	0.157	-2.970	-14 277	-9.012	-9 147	18 758	0.000	4 518	3 526	5 679	10.746
8+16	32 526	1 502	3.045	11 350	0.506	0.139	18 373	13 443	3 106	3.083	6.040	11 111
8116	22.501	2 602	4 492	14 525	2 200	2 010	10.373	14 106	6 949	2 547	6.042	11.507
8:16	-32.391	-2.008	0.729	-14.525	2 297	4 727	17 522	12 202	7 470	2 202	6 100	10.064
0+10	-54.955	1.104	-9.758	-16.740	-5.567	-4.727	12.352	13.303	7.479	3.803	5.510	11,162
8+16	-50.971	-0.012	-10.5/1	-21.178	-9./14	-8.494	10.015	15.404	1.575	2.898	5.510	11.155
8+10	-33.636	0.075	-9.192	-18.031	-9.646	-8.444	19.976	11.433	5.439	5.212	5.201	10.491
3+4+7+11+14+15	4.841	-8.523	-22.857	1.758	-10.680	18.620	16.803	-9.142	8.760	6.020	2.496	3.439
3+4+/+11+14+15	4.648	-9.234	-22.279	1.774	-9.232	18.623	16.677	-6.325	7.071	6.316	3.494	6.391
3+4+7+11+14+15	7.559	-6.707	-23.922	3.276	-3.179	18.035	16.538	-8.142	7.858	6.738	2.985	3.364
3+4+7+11+14+15	6.110	-6.005	-23.635	6.120	-3.856	19.632	17.011	-12.383	9.042	8.457	4.580	5.495
3+4+7+11+14+15	5.276	-6.673	-24.580	3.560	-9.838	18.965	16.502	-13.994	7.395	5.666	3.718	5.292
3+4+7+11+14+15	5.591	-7.801	-24.998	4.459	-8.035	19.453	17.200	-10.322	7.785	6.409	3.408	4.634

Table S7. Fluorescent response patterns of training set in the detection of mixed bacteria.

	Vanao@AnNCo	Basit@AuNCo	A area @ AubiCa	Collictin@AuNCo	DEL@AnNCo	Toioo@AnNCo	DMC B@AnNCa	DMAE T@AnNCo		DMA HD@AnNCo	DMA N@AnNCa	DMA PT@AnNICs
S1	-15.932	0.197	6.694	4.802	-4.247	-4.051	-0.499	-2.027	1.628	-2.401	-2.840	-0.062
S1	-15.629	3.976	9.649	3.474	-4.615	-6.336	-2.715	-1.173	0.050	-3.765	-3.477	-1.475
S1 S1	-8.297	3.917	9.871	8 961	-3.527	6.200 2.948	-0.244	-1.203	0.898	-2.191	-3.166	0.255
S1	-10.192	7.846	8.996	8.702	-4.567	2.831	-3.438	-1.051	-0.116	-2.769	-4.346	-0.789
S1	-9.316	8.566	9.340	8.509	-4.008	3.401	-2.001	-1.492	-0.052	-2.489	-4.646	-1.217
S2 S2	4.495	-4.634	-2.785	-13.475	-2.386	5.083	-2.753	0.472	2.111	-2.032	0.350	-0.456
S2	3.499	-2.186	-3.077	-12.763	-4.078	3.591	-2.360	1.637	2.586	-2.548	1.130	-2.572
S2	3.480	-2.591	-3.655	-14.225	-2.937	3.503	-2.662	0.325	2.624	-2.700	0.823	-1.312
S2 S2	8.057	1.833	1.114	-2.160	-1.437	12.184	-2.873	0.845	3.950	-2.791	0.707	-2.570
S3	-7.787	8.025	7.660	4.801	-3.177	4.808	-2.379	0.821	2.137	-1.025	1.079	0.488
S3	-7.158	8.727	7.709	3.832	-2.896	4.399	-3.089	-0.184	3.331	-1.454	1.424	0.630
53	-6.362	8.027	7.527	5.791	-2.052	4.096	-2.847	0.973	2.024	-1.951	0.686	0.535
\$3	-3.644	6.943	11.255	4.275	-1.979	14.044	-3.836	0.859	2.092	-1.661	0.239	0.512
S3	-3.710	7.278	11.463	3.884	-1.286	12.974	-3.809	1.147	2.279	-1.875	-0.193	0.141
S4	-11.344	-8.322	-2.759	-16.509	-2.741	7.764	-1.576	-5.950	0.472	-3.092	0.884	0.701
S 4	-11.893	-8.995	-3.748	-17.039	-2.931	7.601	-1.778	-4.987	-0.397	-2.981	0.975	0.021
S4 S4	-12.350	-9.293	-6.574	-17.596	-3.037	5.819	-1.776	-4.995	-0.308	-3.501	1.062	0.419
S4	-8.350	-10.287	4.441	-2.862	-1.994	15.741	-2.339	-5.372	-0.670	-2.634	0.335	0.257
S 5	-5.239	-0.385	6.787	-0.884	-2.313	6.327	-3.025	0.345	2.370	-1.744	2.204	0.729
S5	-5.869	-1.047	6.542	-1.106	-2.664	6.816	-1.791	0.077	3.247	-2.102	1.598	1.320
\$5	-6.346	-2.423	4.983	-1.764	-2.694	5.992	-2.730	1.211	2.297	-1.973	1.691	0.597
S 5	-2.571	1.552	12.938	7.408	-2.346	12.332	-2.231	-0.710	2.955	-1.798	1.139	0.724
S5 S6	-4.578	1.224	12.678	7.713	-2.156	12.178	-2.200	-0.614	3.262	-1.877	1.151	0.735
S6	-13.485	-5.693	-3.071	-2.380	-2.659	-4.306	-2.892	-0.020	1.193	-0.774	0.839	0.198
S6	-9.537	-1.041	5.629	5.755	-1.809	2.501	-3.616	-1.087	0.928	-1.009	0.731	0.806
S6	-9.238	-1.317	5.234	4.651	-1.426	1.013	-3.710	0.369	1.248	-1.840	0.905	1.267
S6	-10.160	-1.735	5.199	5.175	-2.407	1.048	-4.010	-0.846	1.243	-0.969	2.043	1.407
S7	0.551	-5.914	9.572	7.010	-1.631	5.872	-1.454	1.069	2.605	-1.846	1.305	2.174
S7	3.634	-1.586	8.411	7.148	-1.544	6.094	-2.585	2.326	2.726	-1.774	0.240	2.355
S7	1.781	3.011	10.368	11.621	0.606	12.016	-1.816	1.172	2.943	-1.942	0.750	2.243
S7	3.198	2.575	10.004	11.582	0.435	11.422	-2.689	2.200	2.082	-1.848	1.462	2.302
S8	3.140	-5.357	-0.532	1.476	-1.620	3.081	-2.256	-4.782	1.567	-3.361	-1.724	0.861
S 8	3.499	-5.009	-0.636	1.372	-1.111	2.687	-2.044	-3.774	0.044	-3.337	-1.625	-0.801
S8	2.543	-5.158	-0.898	0.831	-1.139	2.247	-2.237	-3.758	1.201	-4.177	-0.766	-0.796
58 58	5.135	-0.724	2.412	5.572	-0.104	5.437	-2.020	-3.226	1.051	-2.667	-1.262	-0.406
S 8	4.891	1.095	3.130	6.039	-0.462	5.770	-2.274	-3.883	1.444	-3.533	-1.202	0.585
S9	-5.491	-0.054	4.346	0.526	-6.769	4.633	-1.023	-7.176	2.266	-0.437	0.076	-0.297
S9	-3.484	-0.930	5.020	-0.238	-7.098	4.201	-2.343	-5.872	2.116	-0.523	0.356	-0.650
S 9	-3.090	-1.622	5.258	0.499	-6.861	4.662	-0.515	-6.787	1.780	0.072	0.028	-0.630
S9 S0	-1.533	-0.178	11.484	5.197	-5.027	7.307	-1.794	-6.140	2.617	0.211	0.573	0.243
El	-5.040	10.596	5.114	2.395	-5.327	-9.398	-3.222	-0.617	0.328	1.030	-0.887	0.689
E1	-5.775	10.284	4.845	1.915	-5.178	-9.756	-2.527	-2.427	1.605	0.993	-1.515	0.487
EI	-3.122	10.266	4.870	2.156	-4.793	-9.074	-2.999	-3.729	0.448	0.569	-0.877	0.035
El	-3.799	10.034	6.460	3.085	-5.033	-8.310	-3.005	-3.199	1.584	-0.171	-1.923	0.551
E1	-4.824	10.251	6.231	2.849	-4.339	-8.105	-5.016	-0.733	0.933	0.211	-1.196	0.358
E2 E2	-4.676	5.777	6.992	3.298	-3.398	-5.087	-4.328	0.223	-0.554	-1.421	-0.213	0.973
E2	-4.509	5.868	6.932	3.085	-3.145	-4.878	-3.876	0.240	-1.146	0.022	0.490	1.540
E2 E2	-3.146	6.747	8.039	4.537	-3.326	-2.609	-3.991	0.400	0.004	-0.948	0.320	1.193
E2	-4.241	6.223	7.608	4.342	-3.486	-3.503	-4.303	0.868	-0.853	-0.657	-1.308	1.186
E3	2.943	6.916	13.207	9.227	3.357	4.204	-5.550	6.023	4.382	1.466	1.381	1.217
E3 E3	3.607	7.309	13.279	9.346	3.628	4.175	-3.971	5.330	4.796	1.584	1.603	3.084
E3	4.872	7.304	14.628	10.742	3.533	5.525	-5.610	5.256	4.379	1.499	1.854	3.658
E3	4.464	6.512	13.494	9.829	3.269	5.230	-4.156	4.923	4.487	1.710	0.927	3.691
E3 E4	1.702	7.022	6.326	1.988	0.819	-4.723	-4.490	0.998	1.682	0.692	-1.071	0.858
E4	1.729	7.169	6.649	2.471	0.516	-4.479	-6.531	0.671	2.330	-0.200	-1.525	1.093
E4	3.062	7.735	7.586	5.014	1.379	-3.618	-6.632	-0.149	2.415	0.166	-1.190	1.795
E4	2.247	7.455	6.604	4.701	1.506	-3.559	-6.585	-0.082	2.032	-0.526	-1.070	1.190
E4	2.347	7.345	6.845	4.840	-0.091	-3.600	-6.392	-0.016	1.868	0.020	-1.796	1.918
E5	-2.042	12.681	13.169	6.999	0.535	-0.951	-5.445	2.616	3.441	1.638	2.890	1.871
E5	-2.030	12.257	12.757	6.038	0.697	-1.129	-5.493	1.831	3.331	1.520	2.486	1.834
E5	-0.912	11.075	14.031	4.878	0.383	-1.427	-6.379	2.908	3.083	1.750	2.924	1.833
E5 E5	-1.028	11.907	14.975	6.550	0.275	-0.331	-5.824	2.112	2.695	1.031	2.035	1.989
E6	-7.111	8.129	11.318	1.891	2.511	-2.475	-4.489	0.727	2.441	0.063	1.832	1.070
E6	-6.685	7.966	10.881	2.266	1.199	-3.144	-4.667	0.733	2.648	-0.471	2.011	1.673
E6	-8.058	7.957	10.559	3.310	1.343	-3.928	-4.187	0.631	2.598	0.192	0.365	1.472
E6	-5.229	7.561	11.547	4.516	1.728	-1.848	-6.028	0.260	2.215	-0.874	0.891	1.674
E6	-5.073	7.833	11.568	3.758	1.693	-2.245	-5.712	-0.293	1.990	-0.374	0.094	2.387
E7	5.132	8.553	7.190	9.919	1.075	-5.090	-5.223	-0.528	3.840	1.068	-0.441	2.562
E7	4.676	9.168	7.159	10.272	0.085	-5.299	-5.364	-1.171	3.982	0.678	-0.246	2.784
E7 E7	6.765	9.070	7.170	9.716	2.658	-3.761	-6.472	-0.186	3.270	0.292	-0.431	2.602
E7	6.793	8.178	7.426	9.989	2.473	-4.069	-6.621	-0.134	2.919	0.547	-0.332	3.011
E8	-2.596	7.598	10.866	2.274	1.433	0.452	-17.809	4.305	3.229	2.214	2.150	0.080
E8 F8	-2.659	6 940	10.370	0.981	1.240	-0.075	-18.096	5.051	5.137 3.942	1.250	2.663	0.003
E8	-2.777	6.871	9.961	1.435	1.461	0.873	-18.734	3.652	3.525	1.907	1.071	1.000
E8	-1.434	7.513	10.163	0.372	1.264	2.438	-20.574	3.912	2.345	0.548	0.961	-0.027
E8 E9	-1.361 -5.087	7.585	10.610	0.424	1.809 2.064	0.600	-20.532	3.918 0.381	2.915	0.076	0.384	0.451 4.309
E9	-5.325	9.356	12.349	2.709	1.624	0.127	-3.392	-0.136	3.012	2.151	-0.029	4.393
E9	-4.691	10.014	12.562	3.225	1.485	1.382	-4.655	-1.738	3.886	1.016	0.780	4.216
E9	-4.596	9.753	12.523	2.746	1.514	0.925	-3.334	-0.096	2.665	1.569	0.976	4.279
E9	-4.211	9.130	12.098	3.410	1.146	1.384	-4.664	-0.688	3.517	1.202	0.784	4.145

Table S8. Fluorescent response patterns of training set in the detection of bacteria with gradient concentrations.

Table S9. Fluorescent response patterns of testing set in the detection of bacterial samples in water.

No	Verification	Vanco@AuNCs	Bacit@AuNCs	Acros@AuNCs	Colistin@AuNC	s PEI@AuNC	s Teico@AuNO	s DMC-P@AuNO	s DMAE-T@AuN	Cs DMA-BA@AuNO	's DMA-HP@AuNC	s DMA-N@AuNC:	s DMA-BT@AuNCs
1	S. aureus 1	2.665	-1.850	-1.037	-11.038	-0.892	3.946	17.340	-7.828	-9.794	-2.800	-17.467	0.618
2	S. aureus 1	2.552	-0.712	-1.906	-7.538	-2.255	2.691	16.754	7.564	-14.266	9.923	-8.720	-3.773
3	S. aureus 2	2.560	-1.169	-1.910	-5.443	-2.599	4.568	-7.672	2.161	3.144	-0.057	2.294	-5.778
4	S. aureus 2	2.250	-2.102	-4.826	-7.165	-4.079	3.664	-11.968	-7.778	-12.232	-9.811	-5.012	-11.998
5	S. aureus 3	-7.106	-3.478	-4.724	-15.310	-1.448	2.804	2.327	-4.270	-7.747	-37.291	2.584	-11.016
6	S. aureus 3	-5.775	-4.430	-4.026	-13.070	-2.484	2.542	3.729	3.922	9.954	-25.876	4.401	-8.520
7	E. faecalis	1.246	-28.963	-4.424	-31.951	-3.088	0.234	8.950	12.511	-1.169	8.164	1.919	-7.983
8	E. coli	-50.202	-34.814	-41.102	-37.780	-20.524	-8.411	-0.052	20.483	1.164	13.940	7.023	1.841
9	E. coli	-50.286	-46.618	-45.480	-48.768	-19.356	-5.998	0.208	12.775	-6.835	5.050	4.349	0.449
10	E. coli 1	-84.229	-49.464	-26.219	-29.218	-15.271	-7.370	-0.436	0.697	-3.247	-4.879	-30.493	-0.649
11	E. coli 1	-80.012	-39.780	-25.148	-26.924	-15.384	-7.837	0.444	6.084	-2.637	0.349	-24.530	4.593
12	P. aeruginosa	-17.388	-37.528	-25.986	-35.712	-21.131	-19.382	-12.175	-24.045	-2.928	-13.779	0.213	-7.844
13	P. fluorescens	-49.083	-37.336	-16.717	-28.436	-32.178	-3.030	-0.256	10.951	-3.644	-6.084	5.855	4.997
14	P. fluorescens	-52.383	-40.071	-19.862	-33.096	-30.555	-3.203	-2.457	0.594	-5.898	-17.209	4.593	3.395
15	Sh. flexneri	-19.898	-28.971	-17.191	-22.955	-12.357	-45.496	-6.620	7.407	-14.893	-16.028	8.141	-5.098
16	Sh. flexneri	-18.155	-29.089	-17.444	-30.263	-11.614	-41.802	-10.610	1.393	-34.526	-26.344	4.091	-2.196
17	E. sakazakii	-58.343	-23.069	-12.060	-54.883	-8.554	-40.694	-2.979	-8.450	-3.257	-20.681	4.097	2.265
18	E. sakazakii	-59.119	-19.654	-9.901	-52.430	-11.538	-42.255	-1.182	4.241	1.261	-15.195	7.520	1.839
19	E. cloacae	-6.933	-19.169	-9.315	-13.548	-7.338	-31.591	-0.534	-1.065	2.780	3.325	4.196	-32.233
20	E cloacae	-10 399	-21 231	-12 569	-16 911	-5 542	-31 966	-5 796	-10.916	-2 434	-9 514	3 489	-20 801

Table S10. Fluorescent response patterns of testing set in the detection of bacterial samples in serum.

_													
No	Verification	Vanco@AuNCs	s Bacit@AuNCs	s Aeros@AuNC	s Colistm@AuNO	Cs PEI@AuNCi	s Teico@AuNC	s DMC-P@AuNC	s DMAE-T@AuNC	s DMA-BA@AuNCs	3 DMA-HP@AuNC:	s DMA-N@AuNCs	DMA-BT@AuNCs
1	S. aureus 1	-38.101	1.144	-12.359	-11.498	-10.498	2.296	-0.235	-1.033	-51.149	-8.688	3.761	-3.080
2	S. aureus 3	-30.552	6.041	-1.862	-3.092	-4.356	4.839	-1.187	-2.869	-29.390	-1.682	-2.797	-2.094
3	MRSA	-35.468	6.490	0.766	-5.659	-7.301	5.009	-2.723	1.123	-43.690	-4.577	-3.515	-5.587
4	MRSA	-36.922	1.999	-6.334	-10.052	-8.024	5.487	-3.836	-2.027	-46.478	-8.989	-8.101	-6.207
5	E. faecalis	-52.285	10.326	-7.562	-7.852	-5.316	8.697	-2.460	-5.390	-41.578	-4.422	-3.949	-5.162
6	E. faecalis	-53.529	6.733	-13.326	-9.784	-5.242	8.728	-3.021	-6.531	-54.143	-5.479	-8.718	-4.652
7	B. subtilis	-45.444	3.463	-10.435	-6.233	-7.045	6.499	-2.952	-5.714	-51.383	-6.384	-12.833	-3.469
8	B. subtilis	-46.169	7.029	-8.938	-3.713	-7.399	5.911	-2.287	-3.191	-47.321	-0.718	-8.268	-3.663
9	S. mutans	-38.479	5.861	-8.557	-8.535	-4.311	6.143	3.561	1.819	-29.897	-12.277	-13.254	-8.062
10	E. coli 1	-63.462	-3.332	-3.689	-14.039	-5.631	1.916	21.743	4.565	-40.213	-7.788	-6.823	0.957
11	E.coli BL21	-68.436	-1.969	-11.778	-10.369	-7.128	4.833	8.141	6.447	-44.287	-1.004	-5.134	-2.218
12	E.coli BL21	-67.169	-2.931	-12.581	-11.181	-6.912	4.590	8.012	4.633	-46.793	-6.313	-5.659	-2.819
13	P. aeruginosa	-57.067	-0.023	-14.824	-9.186	-15.246	1.954	3.756	-5.784	-43.304	-7.972	-5.046	-7.314
14	P. aeruginosa	-59.707	0.241	-14.892	-7.310	-15.644	1.832	3.971	-4.076	-36.004	-3.176	-5.188	-8.413
15	P. fluorescens	-41.575	-2.648	-7.007	-12.384	-5.806	5.076	2.311	-2.600	-50.384	-4.296	-4.727	-1.611
16	S.paratyphi B	-56.765	-5.036	8.100	-11.686	-6.716	2.843	4.471	0.424	-47.119	-21.808	-8.758	-1.904
17	S. paratyphi B	-51.109	-1.701	2.876	-11.510	-6.443	2.406	4.729	3.202	-36.788	-13.180	-7.552	-1.350
18	Sh. flexneri	-61.865	4.358	-12.363	-11.802	-13.234	5.175	4.513	-2.180	-28.772	-6.931	-7.605	-2.353
19	E. cloacae	-41.433	5.829	-8.822	-7.620	-8.559	12.960	4.255	0.759	-32.552	-0.722	-12.247	-4.601
20	E. cloacae	-45.349	5.113	-10.682	-8.901	-8.092	12.503	3.204	0.482	-38.118	-6.238	-13.859	-3.472

Table S11. Fluorescent response patterns of testing set in the detection of bacterial samples in urine.

_													
No	Verification	Vanco@AuNC	's Bacit@AuNCs	Acros@AuNC	s Colistin@AuNCs	PEI@AuNCs	Teico@AuN0	Cs DMC-P@AuNO	Cs DMAE-T@AuNO	's DMA-BA@AuNCs	DMA-HP@AuNC	s DMA-N@AuNCs	DMA-BT@AuNCs
1	S. aureus 3	-1.560	-3.111	-1.735	-0.026	-0.466	-0.746	0.886	-12.216	1.935	0.489	-1.758	-4.070
2	S. aureus 3	-0.938	-0.011	0.854	0.587	-0.257	-0.807	0.378	-10.022	7.634	5.780	-2.526	-5.761
3	MRSA	-1.540	1.600	-1.689	-5.585	0.570	-2.699	0.178	-0.570	-10.479	1.721	-3.461	-3.495
4	MRSA	-2.584	-1.125	-3.729	-6.938	0.398	-2.831	-0.332	-2.638	-21.144	0.118	-3.987	-3.709
5	L. monocylogenes	-1.530	0.752	-3.369	1.547	1.923	-0.320	-2.850	-2.331	1.524	2.360	-1.959	-3.680
6	L. monocytogenes	-2.951	1.619	-1.655	1.623	1.112	-0.479	-1.868	-1.773	2.009	3.422	-2.065	-3.927
7	E. faecalis	-0.628	-0.248	-0.989	-0.161	-3.302	0.196	0.247	0.505	4.151	5.135	-0.334	-2.959
8	E. faecalis	-3.055	-0.784	-5.353	-1.784	-3.795	-0.663	-2.204	-0.618	1.003	3.717	-1.064	-3.050
9	S. mutans	1.675	1.700	-4.029	-5.302	-1.788	1.832	2.692	2.784	2.460	4.274	1.483	-1.581
10	E. coli	-1.444	2.513	-9.945	-0.907	-1.373	-8.423	5.326	6.473	2.614	6.613	0.196	2.058
11	E. coli	-4.399	-0.502	-11.637	-5.687	-0.734	-8.186	3.688	-1.195	0.225	4.465	-0.309	1.784
12	P. aeruginosa	-3.528	-5.016	-4.414	-1.404	2.231	-5.857	-0.047	-3.861	2.644	6.745	1.507	-1.024
13	P. aeruginosa	-0.361	-3.999	-1.485	-1.999	3.106	-7.232	1.090	-0.714	4.611	6.563	1.632	-1.614
14	P. fluorescens	-4.433	-2.181	-8.748	-6.232	0.725	-4.112	-1.775	-4.584	0.293	0.821	1.609	-2.194
15	S. paratyphi B	-12.900	-2.007	-3.826	-5.466	-0.123	-0.700	0.281	-1.889	2.123	2.920	-3.913	2.063
16	S.paratyphi B	-13.034	1.134	-2.856	-2.299	0.386	-0.813	-0.122	1.238	4.885	3.880	-2.990	1.519
17	E. sakazakii	-2.131	-5.764	-8.614	-12.831	0.161	-5.317	-2.260	-6.357	-5.904	0.616	0.197	0.595
18	E. sakazakii	0.258	-5.312	-6.574	-7.775	0.800	-5.948	2.693	-0.290	-3.073	3.987	-0.262	1.827
19	E. cloacae	-11.432	0.301	-7.090	-6.626	-3.934	-3.861	-2.344	2.458	2.316	2.175	-2.773	2.211
20	E. cloacae	-13.993	-5.024	-16.139	-9.721	-2.922	-4.214	-4.290	-3.893	-4.074	-1.916	-6.577	0.812

7. HCA and OPLS-DA results

Figure S5. Heatmap and HCA results for the detection of bacterial samples in serum and urine, respectively (**a**, **b**); Loading scatter of the OPLS-DA for for the detection of bacterial samples in serum and urine, respectively (**c**, **d**).

Figure S6. Loading scatter of the OPLS-DA for the detection of mixed bacteria and bacterial samples with gradient concentrations, respectively **(a, b)**.

8. Misclassification table and VIP values of OPLS-DA

	Member	Correct	S. aureus	1 S. aureus 2	S. aureus 3 MRS.	A L. monocytogene.	s E. faecalis	B. subtilis	S. mutans	E. coli	E. coli	1 E.coli BL2	1 P. aeruginosa	P. fluorescens	S. paratyphi B	Sh. flexneri	i E. sakazakii	E. cloacae
S. aureus 1	6	100%	6	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. aureus 2	6	100%	0	6	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. aureus 3	6	100%	0	0	6 0	0	0	0	0	0	0	0	0	0	0	0	0	0
MRSA	6	0%	1	2	0 0	1	0	2	0	0	0	0	0	0	0	0	0	0
L. monocytogenes	6	66.67%	0	1	0 0	4	0	0	0	0	0	0	0	0	0	1	0	0
E. faecalis	6	100%	0	0	0 0	0	6	0	0	0	0	0	0	0	0	0	0	0
B. subtilis	6	100%	0	0	0 0	0	0	6	0	0	0	0	0	0	0	0	0	0
S. mutans	6	100%	0	0	0 0	0	0	0	6	0	0	0	0	0	0	0	0	0
E. coli	6	100%	0	0	0 0	0	0	0	0	6	0	0	0	0	0	0	0	0
E. coli 1	6	100%	0	0	0 0	0	0	0	0	0	6	0	0	0	0	0	0	0
E.coli BL21	6	100%	0	0	0 0	0	0	0	0	0	0	6	0	0	0	0	0	0
P. aeruginosa	6	100%	0	0	0 0	0	0	0	0	0	0	0	6	0	0	0	0	0
P. fluorescens	6	100%	0	0	0 0	0	0	0	0	0	0	0	0	6	0	0	0	0
S. paratyphi B	6	100%	0	0	0 0	0	0	0	0	0	0	0	0	0	6	0	0	0
Sh. flexneri	6	100%	0	0	0 0	0	0	0	0	0	0	0	0	0	0	6	0	0
E. sakazakii	6	100%	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	6	0
E. cloacae	6	100%	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	6
Total	102	92 16%	7	9	6 0	5	6	8	6	6	6	6	6	6	6	7	6	6

Table S12. Misclassification table for the training set in the detection of bacterial samples in water.

Table S13. Misclassification table for the testing set in the detection of bacterial samples in water.

Table S14. Misclassification table for the training set in the detection of bacterial samples in serum.

Table S15. Misclassification table for the testing set in the detection of bacterial samples in serum.

	Members	Correct	S. aureus 1	S. aureus 2	S. aureus 3	MRSA	L. monocytogenes	E. faecalis	B. subtilis	S. mutans	E. coli	E. coli	1 E.coli BL21	P. aeruginosa	P. fluorescens	S. paratyphi B	Sh. flexneri	E. sakazakii	E. cloacae
S. aureus 1	6	100%	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. aureus 2	6	100%	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. aureus 3	6	100%	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MRSA	6	100%	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0
L. monocytogenes	6	100%	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0
E. faecalis	6	100%	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0
B. subtilis	6	100%	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0
S. mutans	6	100%	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0
E. coli	6	100%	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0
E. coli 1	6	100%	0	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0
E.coli BL21	6	100%	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0
P. aeruginosa	6	100%	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	0
P. fluorescens	6	100%	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0
S. paratyphi B	6	100%	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0
Sh. flexneri	6	83.33%	0	1	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0
E. sakazakii	6	100%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0
E. cloacae	6	100%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
Total	102	99.02%	6	7	6	6	6	6	6	6	6	6	6	6	6	6	5	6	6

Table S16. Misclassification table for the training set in the detection of bacterial samples in serum.

Table S17. Misclassification table for the testing set in the detection of bacterial samples in serum.

Table S18. Misclassification table for the training set in the detection of mixed bacteria.

	Members	Correct	3+4	4+7	7+8	11+14	15+16	11+16	4+14	7+15	8+16	3+4+7+11+14+15
3+4	6	100%	6	0	0	0	0	0	0	0	0	0
4+7	6	100%	0	6	0	0	0	0	0	0	0	0
7+8	6	100%	0	0	6	0	0	0	0	0	0	0
11 + 14	6	100%	0	0	0	6	0	0	0	0	0	0
15+16	6	100%	0	0	0	0	6	0	0	0	0	0
11+16	6	100%	0	0	0	0	0	6	0	0	0	0
4+14	6	100%	0	0	0	0	0	0	6	0	0	0
7+15	6	100%	0	0	0	0	0	0	0	6	0	0
8+16	6	100%	0	0	0	0	0	0	0	0	6	0
3+4+7+11+14+15	6	100%	0	0	0	0	0	0	0	0	0	6
Total	60	100%	6	6	6	6	6	6	6	6	6	6

Table S19. Misclassification table for the training set in the detection of bacteria with gradient

	W	ater	Se	rum	U	rine	Mi	xture	Gradient concentration		
	VIP value	SE of mean	VIP value	SE of mean							
Vanco@AuNCs	0.977	0.043	1.025	0.076	0.982	0.124	0.974	0.077	1.065	0.053	
Bacit@AuNCs	0.981	0.052	0.980	0.103	1.065	0.096	1.105	0.215	1.021	0.058	
Aeros@AuNCs	1.011	0.062	0.949	0.100	1.016	0.104	1.089	0.132	0.965	0.044	
Colistin@AuNCs	1.010	0.059	1.040	0.254	0.974	0.084	1.042	0.144	1.026	0.104	
PEI@AuNCs	1.000	0.078	0.992	0.100	1.037	0.056	0.995	0.288	0.995	0.042	
Teico@AuNCs	0.977	0.071	0.993	0.160	1.081	0.041	0.990	0.091	0.999	0.129	
DMC-P@AuNCs	1.039	0.055	0.994	0.081	1.068	0.115	0.926	0.094	1.054	0.074	
DMAE-T@AuNCs	1.036	0.081	1.036	0.064	0.981	0.072	1.104	0.098	1.065	0.059	
DMA-BA@AuNCs	1.115	0.105	1.072	0.084	0.945	0.193	0.912	0.177	1.021	0.139	
DMA-HP@AuNCs	1.045	0.077	0.929	0.054	0.999	0.118	1.040	0.072	0.925	0.077	
DMA-N@AuNCs	0.998	0.102	1.063	0.146	1.012	0.095	0.929	0.201	1.089	0.042	
DMA-BT@AuNCs	1.054	0.066	1.084	0.084	1.031	0.179	0.982	0.077	1.033	0.019	

 Table S20. Variable importance for projection (VIP) values of OPLS-DA for the detection of bacterial samples in the different situation.