Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Photoluminescence Study over Perovskite Materials Derived from Tungsten- and Lanthanide-Containing Aurivillius Layered Perovskite, $Bi_2Na_{0.63}Ln_{0.37}Ta_{1.75}W_{0.25}O_9$.

Keisuke Awaya,*a Ayaka Yamamoto, b Kazuto Hatakeyama, c and Shintaro Ida*c

a) Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.

b) Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.

c) Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1, Kurokami, Chuoku, Kumamoto, 860-8555, Japan.

Figure S1. XRD pattern (2θ/θ scan, 2θ = 46.5-47.7 degrees) of Bi₂Na_{0.63}Ln_{0.37}Ta_{1.75}W_{0.25}O₉. Ln = (a) La, (b) Ce, (c) Pr, (d) Nd, (e) Sm, (f) Eu, (g) Gd, (h) Tb, (i) Dy, (j) Ho, (k) Er, (l) Tm, (m) Yb.

Figure S2. *d*-spacing values and ionic radii (Ln³⁺) for (220) diffraction peak of $Bi_2Na_{0.63}Ln_{0.37}Ta_{1.75}W_{0.25}O_9$ (Ln = La-Yb).

BiNaLnTaWO nanosheet

Figure S3. AFM images of BiNaLnTaWO nanosheet (Ln = (a) La, (b) Ce, (c) Pr, (d) Nd, (e) Gd, (f) Ho, (g) Er, (h) Tm, (i) Yb). Scale bar is 500 nm.

Figure S4. XPS survey scans (0-1350 eV) of BiNaLnTaWO nanosheet (Ln = La-Yb) spincoating film on a quartz glass plate.

Figure S5. Ta 4f and W 4f XPS spectra of (a) BiNaTbTaWO and (b) BiNaLaTbTaO nanosheet spin-coating films on a quartz glass plate.

Figure S6. TEM-EDS spectra of BiNaEuTaWO nanosheet on a quantifoil Mo grid.

Figure S7. TEM-EDS mapping images of BiNaEuTaWO nanosheet on a quantifoil Mo grid.

Figure S8. Photographs of BiNaLnTaWO nanosheet dispersing in 0.025 M TBAOH solution (Ln = La, Ce, Pr, Nd, Gd, Ho, Er, Tm, Yb; $\lambda_{ex.}$ = 280 nm).

Figure S9. UV-Vis spectra of BiNaEuTaWO nanosheet spin-coating film on a quartz glass plate.

Figure S10. PL excitation and emission spectra of BiNaLnTaWO nanosheet dispersing in 0.025 M TBAOH solution (Ln = La, Ce, Pr, Nd, Gd, Ho, Er, Tm, Yb).

Figure S11. PL emission spectra (λ_{ex} = 300 nm) of Bi₂Na_{0.63}Ln_{0.37}Ta_{1.75}W_{0.25}O₉ and Bi₂Na_{0.5}La_{0.13}Ln_{0.37}Ta₂O₉; Ln = Eu or Tb)

Figure S12. (a) Photographs of BiNaLnTaWO nanosheet free-standing films under UV-light illumination ($\lambda_{ex.}$ = 254 nm; Ln = Sm, Eu, Tb, Dy). (b) PL excitation ($\lambda_{em.}$ = 565 [Sm]; 614 [Eu]; 544 [Tb]; 481 nm [Dy]) and emission ($\lambda_{ex.}$ = 300 nm) spectra of BiNaLnTaWO nanosheet free-standing films.

Figure S13. The unit cell of $Bi_{2.5}Na_{0.5}Ta_2O_9$ after geometry optimization using DFT calculation with the plane wave codes CASTEP. The denotations, "O_{per}", "Ta_{per}", "Bi_{0.5}Na_{0.5per}", "Bi_{int}", "O_{int}", are corresponded to the yellow-colored atoms in the unit cell.

Figure S14. Partial density of states obtained from DFT calculation with the plane wave codes CASTEP. The denotations, " O_{per} ", "Ta_{per}", "Bi_{0.5}Na_{0.5per}", "Bi_{int}", "O_{int}", are corresponded to yellow-colored atoms in the unit cell of Bi_{2.5}Na_{0.5}Ta₂O₉ in **Figure S11**.

Figure S15. Partial density of states for d orbital of B_2 sites (Ta₂, Ta_{1.98}W_{0.02}, Ta_{1.96}W_{0.04}) of Bi_{2.5}Na_{0.5}Ta₂O₉, Bi_{2.5}Na_{0.5}Ta_{1.98}W_{0.02}O₉, and Bi_{2.5}Na_{0.5}Ta_{1.96}W_{0.04}O₉ obtained from DFT calculation with the plane wave codes CASTEP.

Figure S16. Relationship between structural entropy of the perovskite layer (A site: ΔS_{mix-A} ; B site: ΔS_{mix-B}) of sample H1-H9 in Table 2 and PL emission ($\lambda_{ex.}$ = 300 nm) intensity ratio at 614 nm (Eu³⁺, ⁵D₀ \rightarrow ⁷F₂ transition) over 592 nm (Eu³⁺, ⁵D₀ \rightarrow ⁷F₁ transition).

Chemical composition	Luminesc ent centre	Quantum yield / % (λ _{ex.})	I _{7F2} /I _{7F1} ratio (for Eu ³⁺ only)	Phase of the starting layered perovskite* ^b	Ref. No.
of perovskite nanosheet*ª					
$Gd_{1.4}Eu_{0.6}Ti_{3}O_{10}$	Eu ³⁺	3.3 (245 nm)	4.5	RP (K ₂ A ₂ B ₃ O ₁₀)	- - S2 -
Gd _{1.4} Tb _{0.6} Ti ₃ O ₁₀	Tb ^{3+*c}	-	-	RP (K ₂ A ₂ B ₃ O ₁₀)	
La _{0.95} Eu _{0.05} Ta ₂ O ₇	Eu ³⁺	-	-	DJ (Rb <i>AB</i> ₂ O ₇)	
La _{0.7} Tb _{0.3} Ta ₂ O ₇	Tb ³⁺	0.9 (230 nm)	-	DJ (RbAB ₂ O ₇)	
La _{0.90} Eu _{0.05} Nb ₂ O ₇	Eu ³⁺	-	3.8	DJ (KAB ₂ O ₇)	S3
Ca _{1.9} Tb _{0.1} Ta ₃ O ₁₀	Tb ³⁺	~19 (270 nm)	-	DJ (CsA ₂ B ₃ O ₁₀)	S4
Bi _{0.16} Sr _{0.75} Ta ₂ O ₇	Bi ³⁺	-	-	AU (Bi ₂ AB ₂ O ₉)	S5
Bi _{0.06} Ca _{0.64} Ta ₂ O _{7-δ}	Bi ³⁺	-	-	AU (Bi ₂ AB ₂ O ₉)	- S6
Bi _{0.05} Na _{0.34} Ta ₂ O _{7-δ}	Bi ³⁺	-	-	AU (Bi ₂ AB ₂ O ₉)	
Bi _{0.11} La _{0.05} Na _{0.22} Ta ₂ O _{7-δ}	Bi ³⁺	0.05 (280 nm)	-	AU (Bi ₂ AB ₂ O ₉)	- - S7 -
Bi _{0.11} Sm _{0.07} Na _{0.26} Ta ₂ O _{7-δ}	Bi ³⁺ & Sm ³⁺	-	-	AU (Bi ₂ AB ₂ O ₉)	
Bi _{0.12} Eu _{0.06} Na _{0.20} Ta ₂ O _{7-δ}	Bi ³⁺ & Eu ³⁺	-	0.6	AU (Bi ₂ AB ₂ O ₉)	
Bi _{0.11} Tb _{0.07} Na _{0.23} Ta ₂ O _{7-δ}	Bi ³⁺ & Tb ³⁺	-	-	AU (Bi ₂ AB ₂ O ₉)	
Bi _{0.10} Dy _{0.05} Na _{0.22} Ta ₂ O _{7-δ}	Bi ³⁺ & Dy ³⁺	-	-	AU (Bi ₂ AB ₂ O ₉)	
$Bi_{0.04}Na_{0.63}Eu_{0.32}Ta_{1.50}W_{0.00}$	Eu ³⁺	0.17 (310 nm)	1.1	AU (Bi ₂ AB ₂ O ₉)	 This work
Bi _{0.04} Na _{0.63} Tb _{0.34} Ta _{1.63} W _{0.0}	Tb ^{3+*c}	-	-	AU (Bi ₂ AB ₂ O ₉)	

Table S1. Summary of the chemical compositions and PL properties of BiNaEuTaWO nanosheet in the present work and various perovskite nanosheets reported in the previous literatures.

*a) The total molar charge of each nanosheet is ignored for the chemical composition.
*b) RP, DJ, and AU denote Ruddlesden-Popper, Dion-Jacobson, and Aurivillius phase layered perovskites, respectively.

*c) The luminescent centre exhibited very weak or no observable emission.

References

S1) T. C. Ozawa, K. Fukuda, K. Akatsuka, Y. Ebina, T. Sasaki, K. Kurashima and K. Kosuda, *J. Phys. Chem. C*, 2008, **112**, 1312-1315.

S2) S. Ida, C. Ogata, U. Unal, K. Izawa, T. Inoue, O. Altuntasoglu and Y. Matsumoto, *J. Am. Chem. Soc.*, 2007, **129**, 8956-8957.

S3) T. C. Ozawa, K. Fukuda, K. Akatsuka, Y. Ebina and T. Sasaki, *Chem. Mater.*, 2007, **19**, 6575-6580.

S4) S. Ida, S. Koga, T. Daio, H. Hagiwara, T. Ishihara, *Angew. Chem.* 2014, **126**, 13294-13298.

S5) S. Ida, C. Ogata, M. Eguchi, W. J. Youngblood, T. E. Mallouk and Y. Matsumoto, *J. Am. Chem. Soc.*, 2008, **130**, 7052-7059.

S6) K. Awaya and S. Ida, Chem. Mater., 2023, 35, 3713-3721.

S7) K. Awaya, K. Hatakeyama and S. Ida, Adv. Opt. Mater., 2024, 12, 2301228.