Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

1 Enhanced Photomultiplication in Filter-Free Organic Photodetectors for

2 Red and NIR Light Sensing Using Minimal Nonfullerene Blends

3

4 Linlin Shi^{1,4*}, Yaojiang Li¹, Jia Jiao¹, Ye Zhang¹, Guohui Li^{1,2*}, Ting Ji¹, Furong Zhu³,

5 Haifeng Lu⁴, and Yanxia Cui^{1,2*}

6

7 ¹College of Electronic Information and Optical Engineering, Key Lab of Interface Science and

8 Engineering in Advanced Materials of Ministry of Education, Key Lab of Advanced

9 Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of

- 10 Technology, Taiyuan 030024, China
- 11 ²Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032,
- 12 China

13 ³ Department of Physics, Research Centre of Excellence for Organic Electronics, Institute of

14 Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR,

15 China

16 ⁴ Yungu (Gu'an) Technology Co., Ltd., Gu'an/Langfang, Hebei 065500, China

*Correspondence author: shilinlinsll@163.com, liguohui@tyut.edu.cn, yanxiacui@tyut.edu.cn
 18

19

20 Calculations

21 The external quantum efficiency and responsivity values of OPDs were derived according to

22 the number of collected charges and the number of incident photons by Equations (1-3):^[1]

$$EQE = \frac{J_{\rm ph}/e}{P_{\rm in}/h\nu},\tag{1}$$

$$EQE = \frac{\chi \tau \mu V}{L^2}$$
(2)

25
$$R = \frac{J_{\rm ph}}{P_{\rm in}} = \frac{EQE \cdot e}{hv}$$
(3)

26

27 $J_{\rm ph}$ is the photogenerated current density (the measured current density under light ($J_{\rm L}$) minus 28 the dark current density ($J_{\rm d}$)), *h* is the Planck constant, and *v* is the frequency of incident light, 29 *hv* is photon energy, and $P_{\rm in}$ is the illumination power density. χ is the ratio of captured carriers 30 to the total exciton dissociation rate, τ is the lifetime of the captured carriers, *V* is the value of 1 the applied bias voltage, μ is the mobility of the uncaptured carriers, and *L* is the device 2 thickness.

3

5

4 D^* of the device calculated from i_n is according to formula (3-4):^[2]

$$D^* = \frac{R\sqrt{AB}}{i_n},\tag{4}$$

6 A is the active area of the PM-OPDs, B is the bandwidth.

Dynamic range (DR) is referred as the predictable photoresponse generated from the highest and lowest detectable illumination power densities, when the slope (β) of the photocurrent density versus light intensity curve is less than 1, exhibiting the sublinear response. It often exists in the photodetectors with gain or photomultiplication. The photodiodes often show a linear dynamic range (LDR) with β =1. Thus the DR and LDR of the devices are calculated by the following equations: ^[3-5]

13
$$DR = 20\log\frac{P_{\text{high}}}{P_{\text{low}}} \neq 20\log\frac{I_{\text{high}}}{I_{\text{low}}}$$
(5)

$$LDR = 20\log\frac{P_{\text{high}}}{P_{\text{low}}} = 20\log\frac{I_{\text{high}}}{I_{\text{low}}}$$
(6)

where P_{high} and P_{low} are the highest and lowest detectable illumination power densities of the photocurrent density versus light intensity curve. I_{high} and I_{low} are the highest and lowest photocurrent density of the photocurrent density versus light intensity curve.

18

14

Supplementary Figures

20 Figure S1 (a) J-V characteristics measured for the PM-OPDs with a 2.8 µm thick P3HT active 21 layer in dark and under illumination of the 660 nm LED having a power density of 1.27

- $1\,$ mW/cm². (b) EQE spectra measured for the P3HT based PM-OPDs with different cathode
- 2 contacts, operated under the bias of -60 V.

- 4 Figure S2 Schematic diagrams illustrating the formation of traps at the (a) P3HT/Al, (b)
- 5 P3HT/Cu (Ag) interfaces.

3

7 Figure S3 Schematic diagram illustrating the tunneling hole injection at the P3HT/A1 interface

8 in a P3HT-based PM-OPD, operated under a reverse bias, under illumination of a 660 nm LED.

2 Figure S4 Absorption spectra of the acceptors used in preparation of different PM-OPDs in this

3 work.

4

5 Figure S5 Semi-log EQE spectra of the P3HT:Y6 -based PM-OPD operated at different biases.

2 Figure S6 Optical field distribution calculated for PM-OPDs with 2.8 µm thick active layers of

3 (a) P3HT:PCBM (100:1) and (b) P3HT:IT-4F (100:1), and photogenerated electron profiles

4 calculated for PM-OPDs with a 2.8 μm thick active layers of (c) P3HT:PCBM (100:1) and (d)

5 P3HT:IT-4F (100:1).

6

7 Figure S7 (a) J-V characteristic, and (b) EQE spectra operated under the bias of -60 V for 8 P3HT:Y6 BHJ PM-OPD with different active layer thicknesses.

2 Figure S8 (a) *J-V* characteristic (b) semi-log EQE spectra operated under the bias of -60 V for
3 P3HT:Y6 BHJ PM-OPDs with different D:A ratio.

5 Figure S9 Response times for the P3HT:Y6 BHJ PM-OPD, operated at the bias of -60 V, under

6 illumination of LEDs with emission peak wavelengths of (a) 660 nm and (b) 850 nm.

1

- 1 Figure S10 Transient responses measured for the P3HT:Y6 BHJ PM-OPD, operated at different
- 2 bias, under illumination of LEDs with emission peak wavelengths of 660 nm and 850 nm.
- 3

Frequency (FI2)
Figure S11 Noise spectral density measured for P3HT:Y6 (100:1)-based PM-OPD operated

- 7 8
- 9 Figure S12 Frequency response of the P3HT:Y6 (100:1)-based PM-OPD operated under bias
 10 of -60 V.

2 Figure S13 $R(\lambda)$ – P_{in} characteristics measured for the P3HT:Y6 (100:1)-based PM-OPD under

3 illumination of (a) 660 nm and (b) 850 nm LEDs.

4

- 5 Figure S14 J-V characteristics in dark and under illumination (850 nm, 1.27 mW/cm²) of the
- 6 freshly prepared P3HT:Y6 BHJ PM-OPD device and its corresponding performances after the
- 7 device aged in air over one week.
- 8
- 9

10 References

- 11 [1] Shi, L., Chen, K., Zhai, A. et al. Status and outlook of metal-inorganic semiconductor-
- 12 metal photodetectors. Laser Photonics Rev. 2020; 15: 2000401.
- 13 [2] Shi, L., Zhu, Y., Li, G. et al. Atomic-level chemical reaction promoting external quantum
- 14 efficiency of organic photomultiplication photodetector exceeding 108% for weak-light
- 15 detection. Sci. Bull. 2023; 68: 928-37.
- 16 [3] Fang, Y., Armin, A., Meredith, P. & Huang, J. Accurate characterization of next-generation
- 17 thin-film photodetectors. Nat. Photon. 2018; 13: 1-4.
- 18 [4] Wang, Y., Kublitski, J., Xing, S. et al. Narrowband organic photodetectors-towards

- 1 miniaturized, spectroscopic sensing. Mater. Horiz. 2022; 9: 220-51.
- 2 [5] Pierre, A., Gaikwad, A. & Arias, A. C. Charge-integrating organic heterojunction
- 3 phototransistors for wide-dynamic-range image sensors. Nat. Photon. 2017; 11: 193-9.