Supplementary Information

Expanding the Horizons for Viable Precursors and Liquid Fluxes for the Synthesis of BaZrS₃ and Related Compounds

Kiruba Catherine Vincent^{*, a}, Shubhanshu Agarwal^{*, a}, Zirui Fan^a, Alison Sofia Mesa Canizales^b, and Rakesh Agrawal^{**, a}

^aDavidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907(USA) ^bChemical and Environmental Engineering, Universidad Nacional de Colombia, Bogota D.C. (Colombia)

*Equal Contribution **Corresponding author: Dr. Rakesh Agrawal. E-mail: <u>agrawalr@purdue.edu</u>

Ba-Zr-S powder reactions

Figure S1. X-ray diffraction pattern of Ba-Zr-S powder synthesized with different Ba:Zr ratios at 575 °C for 12 h with a sulfur pressure of 0.79 atm. BaS and ZrS_2 were used as barium and zirconium precursors, respectively. The X-ray diffraction patterns were collected before rinsing the powders with water as against data in Figure 1.a.

Figure S2. Raman spectra of Ba-Zr-S powder synthesized with different Ba:Zr ratios at 575 °C for 12 h with a sulfur pressure of 0.79 atm. The synthesized powder was washed with water to remove water-soluble impurities (BaS₃). BaS and ZrS₂ were used as barium and zirconium precursors, respectively.

Figure S3. Raman spectra of Ba-Zr-S powder synthesized with different Ba:Zr ratios at 575 °C for 12 h with a sulfur pressure of 0.79 atm. BaS and ZrS_2 were used as barium and zirconium precursors, respectively.

Figure S4. X-ray diffraction pattern of Ba-Zr-S powder synthesized with a Ba:Zr ratio of 1.5:1 and sulfur pressures of 0.79 atm and 0.46 atm, respectively, at 575 °C for 12 h. BaS and ZrS₂ were used as barium and zirconium precursors, respectively.

Figure S5. Raman spectra of Ba-Zr-S powder synthesized with a Ba:Zr ratio of 1.5:1 and sulfur pressures of 0.79 atm and 0.46 atm, respectively, at 575 °C for 12 h. BaS and ZrS₂ were used as barium and zirconium precursors, respectively.

Stacked binary metal sulfides

Figure S6. X-ray diffraction analysis confirmed the formation of BaCl₂ and ZrS₃ after sulfurizing the asannealed film obtained from the mixed precursor ink of BaCl₂-ZrCl₄-thiourea (TU)-dimethyl formamide (DMF). The film underwent sulfurization at 575 °C for 12 h.

Figure S7. Liquid Raman on a) Butylamine (BA)+CS₂, b) BA+CS₂+Pyridine (Py), and c) BA+CS₂+Py+ZrCl₄ (0.5 M). The emergence of a new peak at 2648 cm⁻¹ suggests the formation of the dithiocarbamate group. The broadening of the C=S peak at 656 cm⁻¹ in (c) indicate metal-sulfur interaction.

Figure S8. Liquid Raman on Butylamine a) (BA)+2-methyl-2-propanethiol (MePT), b) BA+MePT+ZrCl₄ (0.5 M), and c) BA+MePT+ZrCl₄ (1 M). The slight broadening and reduction in the ratio of area under peaks of SH to C-S from 0.62 to 0.49 suggests the interaction of metal, sulfur, and thiolate formation. However, insufficient SH peak intensity reduction means the complete substitution of chlorine with thiolate did not occur.

Figure S9. ¹H-NMR analysis on only 2-methyl-2-propanethiol (MePT), stoichiometric MePT+ZrCl₄, and twice stoichiometric MePT+ZrCl₄ in d-pyridine. The slight broadening of the peak for H bound to sulfur suggests the interaction of metal and sulfur and thiolate formation. However, insufficient SH peak intensity reduction means that complete substitution of chlorine with thiolate did not occur.

* d-pyridine

Figure S10. ¹H-NMR analysis on only 2-methyl-2-propanethiol (MePT), stoichiometric MePT+ stoichiometric butylamine (BA)+ZrCl₄, and twice stoichiometric MePT+stoichiometric BA+ZrCl₄ in dpyridine. The broadening of the peak for proton bound to sulfur and reduction in the ratio of the peak intensities of proton at a-site to proton at b-site suggests the increased interaction of thiol and Butylamine as such intensity reduction was not observed without Butylamine.

Figure S11. Raman of ZrS_3 film synthesized from 4 different solution chemistries with $ZrCl_4$ metal precursor. The films were sulfurized at 575 °C for 6 h. Reference Raman peaks were identified by Osada et al.²

Figure S12. X-ray diffraction pattern of ZrS_3 film synthesized from $ZrCl_4$ precursors. The films were sulfurized at 475 °C for 12 h.

Figure S13. SEM top view of ZrS_3 film synthesized from $ZrCl_4$ -2-methyl-2-propanethiol-butylamine solution chemistry. The film was sulfurized at 575 °C for 6 h.

Figure S14. SEM top view of ZrS_3 films synthesized from a) $ZrCl_4$ -thiourea-dimethyl formamide solution chemistry and b) $ZrCl_4$ -thiourea-butylamine solution chemistry. The films were sulfurized at 575 °C for 6 h.

Figure 15. EDX mapping of ZrS_3 film synthesized from $ZrCl_4$ -butylamine- CS_2 -pyridine solution chemistry confirms only Zr and S in the ZrS_3 grains. The film was sulfurized at 575 °C for 6 h.

Figure S16. EDX mapping of ZrS_3 film synthesized from $ZrCl_4$ -2-methyl-2-propanethiol-butylamine solution chemistry confirms the presence of only Zr and S in the ZrS_3 grains. The film was sulfurized at 575 °C for 6 h.

Figure S17. X-ray diffraction pattern of ZrS_3 film synthesized from $ZrBr_4$ and ZrI_4 metal precursors. The films were sulfurized at 575 °C for 6 h.

Figure S18. X-ray diffraction pattern of ZrS_3 , as-coated bilayer stack of ZrS_3 and BaS, and BaZrS₃ after sulfurization where ZrS_3 is synthesized from $ZrCl_4$ -2-methyl-2-propanethiol-butylamine solution chemistry. The stacked film was sulfurized at 575 °C for 2 h.

Figure S19. Raman spectra of BaZrS₃ films synthesized from the BaS-ZrS₃ stacked film. ZrS₃ layer was achieved through the sulfurization of as-annealed film $ZrCl_4$ solution chemistries. The films were sulfurized at 575 °C for 6 h. Reference Raman peaks were identified by Pandey et al.¹

Figure S20. Kubelka-Munk transformation applied to the diffuse reflectance spectra of the BaZrS₃ film derived from stacked BaS-ZrS₃ precursor film. The stacked film was sulfurized at 575 °C for 2 h.

Figure S21. SEM top view of BaZrS₃ after sulfurization of ZrS_3 -BaS stack where ZrS_3 is synthesized from $ZrCl_4$ -2-methyl-2-propanethiol-butylamine. The film was sulfurized at 575 °C for 2 h.

Figure S22. EDX map of BaZrS₃ after sulfurization of ZrS_3 -BaS stack where ZrS_3 is synthesized from $ZrCl_4$ -2-methyl-2-propanethiol-butylamine. The film was sulfurized at 575 °C for 2 h.

Figure S23. EDX map of BaZrS₃ after sulfurization of ZrS_3 -BaS stack where ZrS_3 is synthesized from $ZrCl_4$ -CS₂- butylamine-pyridine. The film was sulfurized at 575 °C for 2 h.

Figure S24. SEM-EDX analysis of BaZrS₃ after sulfurization of ZrS₃-BaS stack where ZrS₃ is synthesized from $ZrCl_4$ -CS₂-butylamine-pyridine. The film was sulfurized at 575 °C for 2 h. The film does not contain any chlorine.

Figure S25. X-ray diffraction plot showing a) the synthesis of HfS_3 from $HfCl_4$ -dimethyl formamide (DMF)-thiourea (TU) chemistry at 575 °C for 6 h and b) the synthesis of a Ruddlesden Popper phase of Ba-Hf-S synthesized from a bilayer stack of HfS_3 -BaS where HfS_3 was synthesized from $HfCl_4$ -dimethyl formamide-thiourea chemistry. The stacked film was sulfurized at 575 °C for 2 h.

Figure S26. X-ray diffraction plot showing a) the synthesis of a mixture of TiS₃ and TiS₂ from TiCl₄-CS₂-butylamine (BA)-pyridine (Pyd) chemistry at 575 °C for 6 h and b) the synthesis of BaTiS₃ from a bilayer stack of TiS₂/TiS₃-BaS. The stacked film was sulfurized at 575 °C for 2 h.

Figure S27. Raman of TiS₂ film synthesized from TiCl₄-butylamine (BA)-CS₂-pyridine (Pyd) and sulfurized at 575 °C for 6 h.

Figure S28. X-ray diffraction pattern of $BaZrS_3$ after sulfurization of as annealed ZrS_x and BaS stack where ZrS_x is synthesized from $ZrCl_4$ -butylamine- CS_2 -pyridine. The film was sulfurized at 575 °C for 12 h.

Figure S29. X-ray diffraction pattern confirmed chlorine impurity after the sulfurization of a stack of BaS at the bottom and as annealed ZrS_x at the top where ZrS_x is synthesized from $ZrCl_4$ -butylamine- CS_2 -pyridine. The film was sulfurized at 575 °C for 12 h and showed a secondary BaCl₂ phase.

Hybrid colloidal precursor

Figure S30. X-ray diffraction pattern of Cu₂BaSnS₄ synthesized from fully dissolved metal sulfides/pure metal precursor ink. Cu₂S, BaS, and Sn powder were dissolved in a mixture of propylamine-CS₂-pyridine to form a 0.4 M total metal concentration ink. The ink was dropcasted at 350 °C and annealed for 10 min.

Figure S31. Raman spectra confirmed the synthesis of BaZrS₃ from a hybrid precursor ink of dissolved BaS and suspended ZrS₃. The film was sulfurized at 575 °C for 2 h. ZrS₃ was synthesized from sulfurization of Zr nanopowder, resulting in less than 1-micron size grains of ZrS₃. Reference Raman peaks were identified by Pandey et al.¹

Figure S32. EDX map of BaZrS₃ after sulfurization of as-coated film from ZrS_3 -BaS hybrid precursor ink. The film was sulfurized at 575 °C for 2 h. ZrS_3 was synthesized from the sulfurization of Zr nanopowder, resulting in less than 1-micron grains of ZrS_3 .

Figure S33. XRD pattern of BaZrS₃ after sulfurization of a doctor blade coated ZrS₃-BaS hybrid precursor ink, where ZrS_3 was synthesized from sulfurization of bulk ZrS_2 powder, resulting in large grains of ZrS₃. The film was sulfurized at 575 °C for 2 h and contains unreacted ZrS_3 and BaS₃ along with BaZrS₃.

Figure S34. SEM top view of BaZrS₃ after sulfurization of a doctor blade coated ZrS_3 -BaS hybrid precursor ink, where ZrS_3 was synthesized from sulfurization of bulk ZrS_2 powder resulting in large grains of ZrS_3 . The film was sulfurized at 575 °C for 2 h and contains unreacted ZrS_3 and BaS₃ along with BaZrS₃.

Figure S35. Raman spectra confirmed the synthesis of $BaTiS_3$ from a hybrid precursor ink of dissolved BaS and suspended TiS_2 . The film was sulfurized at 575 °C for 2 h. TiS_2 was synthesized from the sulfurization of TiH_2 nanopowder.

Figure S36. Raman spectra confirmed the synthesis of BaHfS₃ from a hybrid precursor ink of dissolved BaS and suspended HfS₃. The film was sulfurized at 575 °C for 2 h. HfS₃ was synthesized from the sulfurization of HfH₂ nanopowder.

Selenium liquid flux

Figure S37. Raman of water-washed $BaZrS_3$ synthesized from Se flux at 575 °C for 24 h. Raman shows that slight impurities of selenium remained in the powder. However, the excess selenium can readily dissolve in an amine-thiol mixture or other solution chemistries. Reference Raman peaks were identified by Pandey et al.¹

Figure S38. SEM images of water-washed $BaZrS_3$ synthesized from selenium liquid flux at 575 °C for 24 h.

Figure S39. SEM-EDX analysis of water-washed BaZrS₃ synthesized from selenium liquid flux at 575 °C for 24 h. The BaZrS₃ grains predominantly contain Ba, Zr, and S, with negligible selenium within the grain. However, some pockets of residual bulk selenium remained, which can be removed with a relevant solution treatment.

Figure S40. Raman of amine-thiol washed BaZrS₃ synthesized from Se flux at 575 °C for 24 h. After the water wash, the BaZrS₃ powder was rinsed in a propylamine-ethanedithiol mixture (5:1 vol:vol). The residual selenium was washed away. Reference Raman peaks were identified by Pandey et al.¹

Figure S41. SEM-EDX analysis of water-washed BaZrS₃ synthesized from selenium liquid flux at 575 °C for 24 h. The BaZrS₃ grains predominantly contain Ba, Zr, and S, with negligible selenium within the grain. After the water wash, the BaZrS₃ powder was rinsed in a propylamine-ethanedithiol mixture (5:1 vol:vol). The residual selenium was washed away. However, the EDX analysis shows that the grains are Ba-poor. It might be because some Ba was lost as BaSe₃.

Figure S42. X-ray diffraction plot of water-washed BHfS₃ synthesized from selenium liquid flux at 575 °C for 2 h.

Figure S43. Raman spectra of a) water-washed $BaHfS_3$ and b) propylamine-ethanedithiol-washed $BaHfS_3$ synthesized from selenium liquid flux at 575 °C for 24 h.

Figure S44. X-ray diffraction plot of water-washed $BaTiS_3$ synthesized from selenium liquid flux at 575 °C for 24 h.

Figure S45. Raman spectra of water-washed $BaTiS_3$ synthesized from selenium liquid flux at 575 °C for 24 h.

Figure S46. X-ray diffraction plot showing that the heating of the binary sulfides for the potential synthesis of SrZrS₃ in the presence of sulfur did not result in a ternary phase even after 7 days

Figure S47. X-ray diffraction plot of the time evolution of α -SrZrS₃ phase synthesized using binary sulfides and selenium liquid flux at 575 °C.

References:

- Pandey, J.; Ghoshal, D.; Dey, D.; Gupta, T.; Taraphder, A.; Koratkar, N.; Soni, A. Local Ferroelectric Polarization in Antiferroelectric Chalcogenide Perovskite BaZrS3 Thin Films. *Phys Rev B* 2020, *102* (20), 205308. https://doi.org/10.1103/PhysRevB.102.205308.
- Osada, K.; Bae, S.; Tanaka, M.; Raebiger, H.; Shudo, K.; Suzuki, T. Phonon Properties of Few-Layer Crystals of Quasi-One-Dimensional ZrS₃ and ZrSe₃. *The Journal of Physical Chemistry C* 2016, *120* (8), 4653–4659. https://doi.org/10.1021/acs.jpcc.5b12441.