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Ba-Zr-S powder reactions
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Figure S1. X-ray diffraction pattern of Ba-Zr-S powder synthesized with different Ba:Zr ratios at 575 °C
for 12 h with a sulfur pressure of 0.79 atm. BaS and ZrS, were used as barium and zirconium precursors,
respectively. The X-ray diffraction patterns were collected before rinsing the powders with water as
against data in Figure 1.a.
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Figure S2. Raman spectra of Ba-Zr-S powder synthesized with different Ba:Zr ratios at 575 °C for 12 h
with a sulfur pressure of 0.79 atm. The synthesized powder was washed with water to remove water-
soluble impurities (BaS;). BaS and ZrS, were used as barium and zirconium precursors, respectively.
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Figure S3. Raman spectra of Ba-Zr-S powder synthesized with different Ba:Zr ratios at 575 °C for 12 h
with a sulfur pressure of 0.79 atm. BaS and ZrS, were used as barium and zirconium precursors,
respectively.
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Figure S4. X-ray diffraction pattern of Ba-Zr-S powder synthesized with a Ba:Zr ratio of 1.5:1 and sulfur
pressures of 0.79 atm and 0.46 atm, respectively, at 575 °C for 12 h. BaS and ZrS, were used as barium
and zirconium precursors, respectively.
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Figure S5. Raman spectra of Ba-Zr-S powder synthesized with a Ba:Zr ratio of 1.5:1 and sulfur pressures
of 0.79 atm and 0.46 atm, respectively, at 575 °C for 12 h. BaS and ZrS, were used as barium and
zirconium precursors, respectively.



Stacked binary metal sulfides
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Figure S6. X-ray diffraction analysis confirmed the formation of BaCl, and ZrS; after sulfurizing the as-
annealed film obtained from the mixed precursor ink of BaCl,-ZrCl,-thiourea (TU)-dimethyl formamide
(DMF). The film underwent sulfurization at 575 °C for 12 h.
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Figure S7. Liquid Raman on a) Butylamine (BA)+CS,, b) BA+CS,+Pyridine (Py), and c)
BA+CS,+Py+ZrCl, (0.5 M). The emergence of a new peak at 2648 cm™! suggests the formation of the
dithiocarbamate group. The broadening of the C=S peak at 656 cm™ in (c) indicate metal-sulfur
interaction.
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Figure S8. Liquid Raman on Butylamine a) (BA)+2-methyl-2-propanethiol (MePT), b) BA+MePT+ZrCl,
(0.5 M), and ¢c) BA+MePT+ZrCl, (1 M). The slight broadening and reduction in the ratio of area under
peaks of SH to C-S from 0.62 to 0.49 suggests the interaction of metal, sulfur, and thiolate formation.
However, insufficient SH peak intensity reduction means the complete substitution of chlorine with
thiolate did not occur.
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Figure S9. 'H-NMR analysis on only 2-methyl-2-propanethiol (MePT), stoichiometric MePT+ZrCl,, and
twice stoichiometric MePT+ZrCly in d-pyridine. The slight broadening of the peak for H bound to sulfur
suggests the interaction of metal and sulfur and thiolate formation. However, insufficient SH peak
intensity reduction means that complete substitution of chlorine with thiolate did not occur.
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Figure S10. 'H-NMR analysis on only 2-methyl-2-propanethiol (MePT), stoichiometric MePT+

stoichiometric butylamine (BA)+ZrCl,, and twice stoichiometric MePT+stoichiometric BA+ZrCly in d-
pyridine. The broadening of the peak for proton bound to sulfur and reduction in the ratio of the peak
intensities of proton at a-site to proton at b-site suggests the increased interaction of thiol and Butylamine

as such intensity reduction was not observed without Butylamine.
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Figure S11. Raman of ZrS; film synthesized from 4 different solution chemistries with ZrCl, metal
precursor. The films were sulfurized at 575 °C for 6 h. Reference Raman peaks were identified by Osada
et al.?
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Figure S12. X-ray diffraction pattern of ZrS; film synthesized from ZrCl, precursors. The films were
sulfurized at 475 °C for 12 h.
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Figure S13. SEM top view of ZrS; film synthesized from ZrCl,-2-methyl-2-propanethiol-butylamine
solution chemistry. The film was sulfurized at 575 °C for 6 h.

Figure S14. SEM top view of ZrS; films synthesized from a) ZrCly-thiourea-dimethyl formamide
solution chemistry and b) ZrCl,-thiourea-butylamine solution chemistry. The films were sulfurized at 575
°C for 6 h.
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Figure 15. EDX mapping of ZrS; film synthesized from ZrCl,-butylamine-CS,-pyridine solution
chemistry confirms only Zr and S in the ZrS; grains. The film was sulfurized at 575 °C for 6 h.
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Figure S16. EDX mapping of ZrS; film synthesized from ZrCl,-2-methyl-2-propanethiol-butylamine

solution chemistry confirms the presence of only Zr and S in the ZrS; grains. The film was sulfurized at
575 °C for 6 h.
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Figure S17. X-ray diffraction pattern of ZrS; film synthesized from ZrBr, and Zrl; metal precursors. The
films were sulfurized at 575 °C for 6 h.
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Figure S18. X-ray diffraction pattern of ZrS;, as-coated bilayer stack of ZrS; and BaS, and BaZrS; after
sulfurization where ZrS; is synthesized from ZrCly-2-methyl-2-propanethiol-butylamine solution
chemistry. The stacked film was sulfurized at 575 °C for 2 h.

12



Stacked film using ZrCl +BA+CS,+Pyd

Stacked film using ZrCl,+MePT+BA

Intensity (a.u)

BaZrS, std

T T T T T T T T
100 200 300 400 500 600 700 800 900

Raman Shift (cm™)

Figure S19. Raman spectra of BaZrS; films synthesized from the BaS-ZrS; stacked film. ZrS; layer was
achieved through the sulfurization of as-annealed film ZrCl, solution chemistries. The films were
sulfurized at 575 °C for 6 h. Reference Raman peaks were identified by Pandey et al.!
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Figure S20. Kubelka-Munk transformation applied to the diffuse reflectance spectra of the BaZrS; film
derived from stacked BaS-ZrS; precursor film. The stacked film was sulfurized at 575 °C for 2 h.
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Figure S21. SEM top view of BaZrS; after sulfurization of ZrS;-BaS stack where ZrS; is synthesized
from ZrCl,-2-methyl-2-propanethiol-butylamine. The film was sulfurized at 575 °C for 2 h.
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Figure S22. EDX map of BaZrS; after sulfurization of ZrS;-BaS stack where ZrS; is synthesized from
ZrCly-2-methyl-2-propanethiol-butylamine. The film was sulfurized at 575 °C for 2 h.
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Figure S23. EDX map of BaZrS; after sulfurization of ZrS;-BaS stack where ZrS; is synthesized from
ZrCl,-CS,- butylamine-pyridine. The film was sulfurized at 575 °C for 2 h.
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Figure S24. SEM-EDX analysis of BaZrS; after sulfurization of ZrS;-BaS stack where ZrS; is
synthesized from ZrCl;-CS,-butylamine-pyridine. The film was sulfurized at 575 °C for 2 h. The film
does not contain any chlorine.
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Figure S25. X-ray diffraction plot showing a) the synthesis of HfS; from HfCl;-dimethyl formamide
(DMF)-thiourea (TU) chemistry at 575 °C for 6 h and b) the synthesis of a Ruddlesden Popper phase of
Ba-Hf-S synthesized from a bilayer stack of HfS;-BaS where HfS; was synthesized from HfCl;-dimethyl
formamide-thiourea chemistry. The stacked film was sulfurized at 575 °C for 2 h.
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Figure S26. X-ray diffraction plot showing a) the synthesis of a mixture of TiS; and TiS, from TiCl,-CS,-
butylamine (BA)-pyridine (Pyd) chemistry at 575 °C for 6 h and b) the synthesis of BaTiS; from a bilayer
stack of TiS,/TiS;-BaS. The stacked film was sulfurized at 575 °C for 2 h.
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Figure S27. Raman of TiS, film synthesized from TiCl,-butylamine (BA)-CS,-pyridine (Pyd) and

sulfurized at 575 °C for 6 h.
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Figure S28. X-ray diffraction pattern of BaZrS; after sulfurization of as annealed ZrS, and BaS stack

where ZrS, is synthesized from ZrCl,-butylamine-CS,-pyridine. The film was sulfurized at 575 °C for 12
h.

- ,l. T =
Ba,Zr,S,- ICSD#264213

Stacked Ba-s bottom + Zr-S top - sulfurized

Intensity (a.u)

10 20 ) 40 50 60 70 80

ZrCl,- ICSD#130654

h. kk L.... A_ak

Il 1 BaCl,- ICSD#16915
W) e

| I ZrS3- ICSD#42073
LL . .

W W T

20 ()
Figure S29. X-ray diffraction pattern confirmed chlorine impurity after the sulfurization of a stack of BaS

at the bottom and as annealed ZrS; at the top where ZrS; is synthesized from ZrCly-butylamine-CS,-
pyridine. The film was sulfurized at 575 °C for 12 h and showed a secondary BaCl, phase.
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Hybrid colloidal precursor
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Figure S30. X-ray diffraction pattern of Cu,BaSnS, synthesized from fully dissolved metal sulfides/pure
metal precursor ink. Cu,S, BaS, and Sn powder were dissolved in a mixture of propylamine-CS,-pyridine
to form a 0.4 M total metal concentration ink. The ink was dropcasted at 350 °C and annealed for 10 min.
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Figure S31. Raman spectra confirmed the synthesis of BaZrS; from a hybrid precursor ink of dissolved
BaS and suspended ZrS;. The film was sulfurized at 575 °C for 2 h. ZrS; was synthesized from
sulfurization of Zr nanopowder, resulting in less than 1-micron size grains of ZrS;. Reference Raman
peaks were identified by Pandey et al.!
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Figure S32. EDX map of BaZrS; after sulfurization of as-coated film from ZrS;-BaS hybrid precursor
ink. The film was sulfurized at 575 °C for 2 h. ZrS; was synthesized from the sulfurization of Zr
nanopowder, resulting in less than 1-micron grains of ZrS;.
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Figure S33. XRD pattern of BaZrS; after sulfurization of a doctor blade coated ZrS;-BaS hybrid
precursor ink, where ZrS; was synthesized from sulfurization of bulk ZrS, powder, resulting in large
grains of ZrS;. The film was sulfurized at 575 °C for 2 h and contains unreacted ZrS; and BaS; along with
BaZrS;.
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Figure S34. SEM top view of BaZrS; after sulfurization of a doctor blade coated ZrS;-BaS hybrid
precursor ink, where ZrS; was synthesized from sulfurization of bulk ZrS, powder resulting in large

grains of ZrS;. The film was sulfurized at 575 °C for 2 h and contains unreacted ZrS; and BaS; along with
BaZrS;.
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Figure S35. Raman spectra confirmed the synthesis of BaTiS; from a hybrid precursor ink of dissolved
BaS and suspended TiS,. The film was sulfurized at 575 °C for 2 h. TiS, was synthesized from the
sulfurization of TiH, nanopowder.
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Figure S36. Raman spectra confirmed the synthesis of BaHfS; from a hybrid precursor ink of dissolved
BaS and suspended HfS;. The film was sulfurized at 575 °C for 2 h. HfS; was synthesized from the
sulfurization of HfH, nanopowder.
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Selenium liquid flux
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Figure S37. Raman of water-washed BaZrS; synthesized from Se flux at 575 °C for 24 h. Raman shows
that slight impurities of selenium remained in the powder. However, the excess selenium can readily
dissolve in an amine-thiol mixture or other solution chemistries. Reference Raman peaks were identified
by Pandey et al.!

Figure S38. SEM images of water-washed BaZrS; synthesized from selenium liquid flux at 575 °C for 24
h.
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Figure S39. SEM-EDX analysis of water-washed BaZrS; synthesized from selenium liquid flux at 575
°C for 24 h. The BaZrS; grains predominantly contain Ba, Zr, and S, with negligible selenium within the
grain. However, some pockets of residual bulk selenium remained, which can be removed with a relevant
solution treatment.
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Figure S40. Raman of amine-thiol washed BaZrS; synthesized from Se flux at 575 °C for 24 h. After the
water wash, the BaZrS; powder was rinsed in a propylamine-ethanedithiol mixture (5:1 vol:vol). The
residual selenium was washed away. Reference Raman peaks were identified by Pandey et al.!

24



S:Se -1:0.02

Figure S41. SEM-EDX analysis of water-washed BaZrS; synthesized from selenium liquid flux at 575
°C for 24 h. The BaZrS; grains predominantly contain Ba, Zr, and S, with negligible selenium within the
grain. After the water wash, the BaZrS; powder was rinsed in a propylamine-ethanedithiol mixture (5:1
vol:vol). The residual selenium was washed away. However, the EDX analysis shows that the grains are
Ba-poor. It might be because some Ba was lost as BaSe;.
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Figure S42. X-ray diffraction plot of water-washed BHfS; synthesized from selenium liquid flux at 575
°C for 2 h.
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Figure S43. Raman spectra of a) water-washed BaHfS; and b) propylamine-ethanedithiol-washed BaH{fS;
synthesized from selenium liquid flux at 575 °C for 24 h.
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Figure S44. X-ray diffraction plot of water-washed BaTiS; synthesized from selenium liquid flux at 575
°C for 24 h.
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Figure S45. Raman spectra of water-washed BaTiS; synthesized from selenium liquid flux at 575 °C for
24 h.
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Figure S46. X-ray diffraction plot showing that the heating of the binary sulfides for the potential
synthesis of SrZrS; in the presence of sulfur did not result in a ternary phase even after 7 days
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Figure S47. X-ray diffraction plot of the time evolution of a-SrZrS; phase synthesized using binary
sulfides and selenium liquid flux at 575 °C.
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