Electronic supplementary information

The enhanced thermal stability for NIR emission $A_2InCl_5 \cdot H_2O: Cr^{3+}$ **phosphor based on A site regulation**

Lingkang Yu,^{a,b} Yining Wang,^{a,b} Xiaole Xing,^{a,b} Zheng Xu,^{a,b} Mengmeng Shang,^{*a,b}

^a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of

Material Science and Engineering, Shandong University, Jinan 250061, P. R. China

*^b*Shenzhen Research Institute of Shandong University, Shandong University, Shenzhen 518063, P. R. China

*Email: mmshang@sdu.edu.cn

Experimental section

Materials.

Cesium chloride (CsCl, Aladdin, 99.99%), Indium oxide (In₂O₃, Jining Tianyi New Materials Co.,Ltd, 99.99%), Chromium chloride (CrCl₃, Aladdin, 99.99%), Potassium carbonate (K₂CO₃, Sinopharm Chemical Reagent Co., Ltd, analytical pure), Rubidium carbonate (Rb₂CO₃, Aladdin, 99.8%), Sodium chloride (NaCl, Aladdin, 99.99%), Hydrochloric acid and ethanol were purchased from Sinopharm Chemical Reagent Co., Ltd. All materials were used without further purification.

Synthesis of Cs2InCl5·H2O:xCr3+ powder.

 Cr^{3+} doped $Cs_2InCl_5·H_2O$ crystal powders were prepared following a hydrothermal method. In detail, 2 mmol CsCl, x mmol CrCl₃ and $(1-x)/2$ mmol In₂O₃ were dissolved with 10 ml HCl in a 25 ml Teflon autoclave (x was set as $0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30$, respectively). The solution was heated at 160 °C for 6 h, then slowly cooled to room temperature. The as-synthesized crystal powders were then filtered out and washed 2~3 times with ethanol, and finally dried in a furnace at 60 °C for overnight.

Synthesis of (Cs_1, Rb_v) **₂InCl₅^{** \cdot **}H₂O:0.25Cr³⁺ powder.**

0.25 mmol CrCl₃, 0.375 mmol In₂O₃, y mmol Rb₂CO₃ and (2-2y) mmol CsCl were dissolved with 10ml HCl in a 25ml Teflon autoclave (y was set as 0, 0.2, 0.4, 0.6, 0.8, 1.0, respectively). The solution was heated at 160 °C for 6 h, then slowly cooled to room temperature. The as-synthesized crystals were then filtered out and washed with ethanol 2~3 times, and finally dried in a furnace at 60 °C for overnight.

Synthesis of (Cs_1,ZK_z) **₂InCl₅·H**₂**O:0.25Cr**³⁺**powder**.

 $(Cs_{1}ZK_{z})\text{lnCl}_{5} \cdot H_{2}O:0.25Cr^{3+}$ crystals were prepared with the similar procedures to that of $(Cs_{1}$ v_R Rb v_L lnCl₅·H₂O:0.25Cr³⁺ crystals above, except z was set as 0, 0.1, 0.2, 0.3, 0.4, 0.5, respectively.

Characterization.

The diffuse reflection spectra (DRS) were recorded on an UV−vis−NIR spectrophotometer (UV-3600 plus, Shimadzu, Japan). The composition and phase of materials were detected by powder X-ray diffraction (XRD) measurements using a D8 Focus diffractometer (Bruker) with Cu K α radiation ($\lambda = 0.15405$ nm). The General Structure Analysis System II (GSAS II) program was used to conduct XRD refinements. The morphology and elemental composition were obtained by a field-emission scanning electron microscope (SU-70, Hitachi) equipped with an energy-dispersive spectrometer. The steady-state photoluminescence (PL) and photoluminescence excitation (PLE) spectra, the decay curves, temperature-dependent PL spectra (77-425K) and PLQYs were recorded via an Edinburgh fluorescence spectrometer (FLS 980) equipped with a continuous 450 W xenon lamp as the steady-state excitation sources, a pulsed high-energy Xenon flash lamp (μF_2) as the transient excitation source, and an integrating sphere. The thermogravimetric (TG) tests were detected by a thermogravimetric analyzer (TGA8000, PerkinElmer). The differential scanning calorimetry (DSC) curves were detected by Differential Scanning Calorimeter (DSC8000 PerkinElmer). The quantum efficiency for NIR emission of the as-prepared phosphors was recorded by vis–NIR absolute quantum efficiency test system (Hamamatsu C9920-02) equipped with 3.3-inch integrating sphere. In order to evaluate the Debye temperature of $Cs_2InCl_5·H_2O:0.25Cr^{3+}$, $(Cs_{0.6}Rb_{0.4})_2InCl_5·H_2O:0.25Cr^{3+}$ and $(Cs_{0.7}K_{0.3})_2InCl_5 \cdot H_2O: 0.25Cr^{3+}$, DFT method was used. The generalized gradient approximation with the Perdew-Burke-Ernzerhof functional was used as the exchange correlation potential. All calculations were performed using a 650 eV cut-off energy. In the Brillouin zone, a $2 \times 3 \times 4$ k-mesh grid centered on gamma was used, and the self-consistent charge density was determined by the Monkhorst-Pack scheme. The lattice was completely relaxed until the atomic force was<−0.02 eV Å⁻¹.

Debye temperature (*ΘD,i*) was calculated according to the anisotropic atomic displacement parameter, using the following formula:

$$
\Theta_{D,i} = \sqrt{\frac{3\hbar T N_A}{A_i k_B U_{iso,i}}} \tag{eq.S1}
$$

The formula incorporates the atomic weight of the atom (A_i) , reduced Planck's constant (h) , Boltzmann's constant (k_B), the average atomic displacement parameter ($U_{iso,i}$). The $\Theta_{D,i}$, value is inversely proportional to *Uiso,i*.

Fig. S1.a b) XRD Rietveld refinement of $Cs_2InCl_5·H_2O$ matrix and $Cs_2InCl_5·H_2O:0.25Cr^{3+}$.

Fig.S2. PL spectra for the Cs₂InCl₅·H₂O:xCr³⁺(x = 0 ~ 0.30) phosphors at 360 nm excitation wavelength.

Fig. S3. SEM image and elemental mapping images of $(Cs_{0.6}Rb_{0.4})_2InCl_5·H_2O:0.25Cr^{3+}$.

Fig. S4. SEM image and elemental mapping images of $(Cs_{0.7}K_{0.3})_2InCl_5·H_2O:0.25Cr^{3+}$.

 $(Cs_{0.7}K_{0.3})_2$ InCl₅·H₂O:0.25Cr³⁺.

Fig. S6. PLE spectra of $Cs_2InCl_5·H_2O: 0.25Cr^{3+}$, $Cs_2KInCl_6: 0.25Cr^{3+}$, $Rb_2InCl_5·H_2O: 0.25Cr^{3+}$.

Fig. S7. Normalized PL spectrum of $Cs_2InCl_5·H_2O:0.25Cr^{3+}$, $(Cs_{0.6}Rb_{0.4})_2InCl_5·H_2O:0.25Cr^{3+}$ and

 $(Cs_{0.7}K_{0.3})_2$ InCl₅·H₂O:0.25Cr³⁺.

Fig. S8. PLQY of $Cs_2InCl₅·H₂O:0.25Cr³⁺$, $(Cs_{0.6}Rb_{0.4})_2InCl_5·H_2O:0.25Cr^{3+}$ and

 $(Cs_{0.7}K_{0.3})_2InCl_5·H_2O:0.25Cr^{3+}$ under 360 nm excitation.

Fig. S9. TG curve of $Cs_2InCl₅·H₂O$.

Fig. S10. DSC curves of $Cs_2InCl_5·H_2O$, $Cs_2InCl_5·H_2O:0.25Cr^{3+}$, $(Cs_{0.6}Rb_{0.4})_2InCl_5·H_2O:0.25Cr^{3+}$ and $(Cs_{0.7}K_{0.3})_2$ InCl₅·H₂O:0.25Cr³⁺.

Fig. S11. Normalized temperature-dependent emission spectra of Cs₂InCl₅·H₂O:0.25Cr³⁺ from 77 to 425

K.

Fig. S12. Normalized temperature-dependent emission spectra of $(Cs_{0.6}Rb_{0.4})_2InCl_5·H_2O:0.25Cr^{3+}$ from

77 to 425 K.

Fig. S13. Normalized temperature-dependent emission spectra of $(Cs_{0.7}K_{0.3})_2InCl_5\cdot H_2O:0.25Cr^{3+}$ from 77

to 425 K.

Fig. S14. Temperature-dependent integrated emission intensity of $Cs_2InCl₅·H₂O:0.25Cr³⁺$, $(Cs_{0.6}Rb_{0.4})_2InCl_5·H_2O:0.25Cr^{3+}$ and $(Cs_{0.7}K_{0.3})_2InCl_5·H_2O:0.25Cr^{3+}$.

Fig. S15. The dependence of FWHM of the PL spectra for $Cs_2InCl_5·H_2O:0.25Cr^{3+}$, $(Cs_{0.6}Rb_{0.4})_2InCl_5·H_2O:0.25Cr^{3+}$ and $(Cs_{0.7}K_{0.3})_2InCl_5·H_2O:0.25Cr^{3+}$ on temperature.

Fig. S16. The output power and photoelectric conversion efficiency of NIR LEDs at different currents.

Table S1. Main parameters of processing and refinement results of Cs₂InCl₅·H₂O and $Cs_2InCl_5·H_2O:0.25Cr^{3+}.$

Compound	$Cs2InCl5·H2O$	$Cs_2InCl5·H2O:Cr3+$
Space group	Pnma	Pnma
a, \AA	14.4167	14.4169
b, \AA	10.3843	10.3806
c, Å	7.4117	7.4125
V, \AA^3	1109.5829	1109.3217
$\alpha = \beta = \gamma,$	90	90
Uiso(Cr)		0.006
Rwp, %	9.144	9.681
Rp, %	6.971	7.010

Table S2. Main parameters of processing and refinement results of $(Cs_{0.6}Rb_{0.4})_2InCl_5·H_2O:0.25Cr^{3+}$ and $(Cs_{0.7}K_{0.3})_2InCl_5·H_2O:0.25Cr^{3+}.$

Compound	$(Cs_{0.6}Rb_{0.4})_2InCl_5·H_2O:Cr^{3+}$	$(Cs_{0.7}K_{0.3})_2InCl_5·H_2O:Cr^{3+}$
Space group	Pnma	Pnma
a, \AA	14.4032	14.3061
b, \AA	10.3554	10.2748
c, \AA	7.4070	7.3610
V, \mathring{A}^3	1104.7537	1082.0115
$\alpha = \beta = \gamma,$	90	90
$U_{\text{iso}}(Cr)$	0.005	0.003
$R_{wp}, \%$	7.861	8.539
R_p , %	5.685	6.356