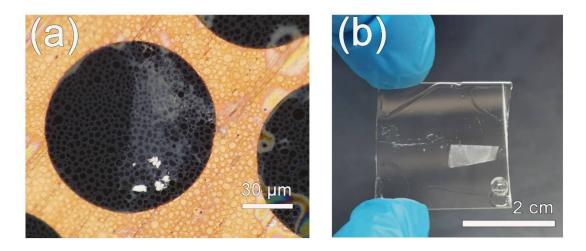
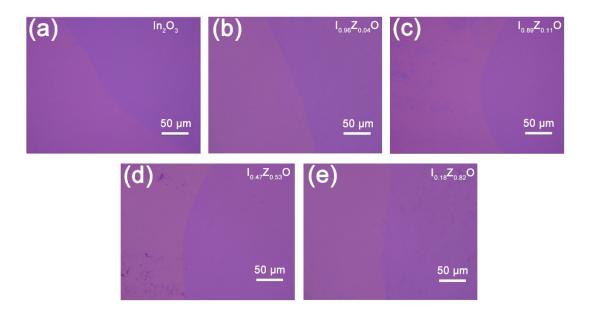
Supporting information

Ultrathin 2D IZO Film Transistor Printed via Liquid InZn Alloy: Insights into the Oxidation Behavior and Enhanced Mobility Properties


Shanhao Ze ^{a,b}, Fei Li ^{a,b}, Jiaming Guo ^{a,b}, Cong Luo ^{a,b}, Tongxiang Chen ^{a,b}, Yan Tian ^{b,c}, Fei Liu ^{c,*}, Jing Li ^{a,b,*} and Baodan Liu ^{a,b,*}

^aSchool of Materials Science and Engineering, Northeastern University, No. 11, Wenhua Road, Shenyang, 110819, China


^bFoshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China

^cState Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China

* Corresponding Author: liufei@mail.sysu.edu.cn; lijing1@mail.neu.edu.cn; baodanliu@hotmail.com

Fig. S1 (a) 2D IZO films on TEM grid, (b) IZO films adhered with photoresist on quartz glass.

Fig. S2 Optical images of (a) In_2O_3 , (b) $I_{0.96}Z_{0.04}O$, (c) $I_{0.89}Z_{0.11}O$, (d) $I_{0.47}Z_{0.53}O$ and (e) $I_{0.18}Z_{0.82}O$ films.

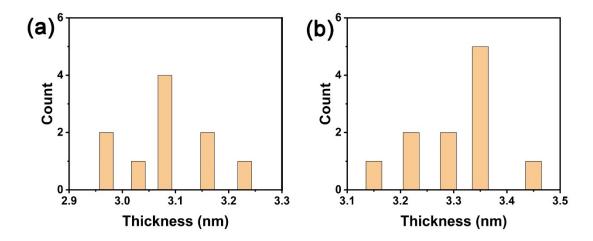


Fig. S3 Statistical distribution of layer thicknesses of In_2O_3 and IZO over ten samples each.

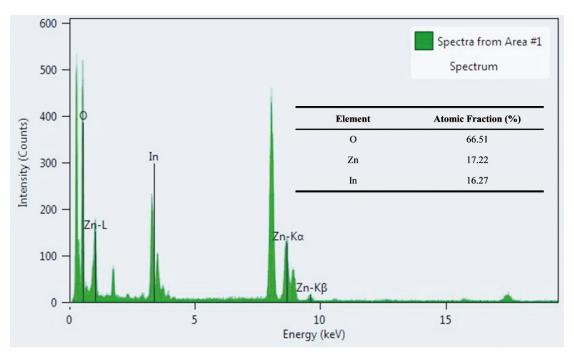


Fig. S4 TEM-EDS spectrum of $I_{0.47}Z_{0.53}O$.

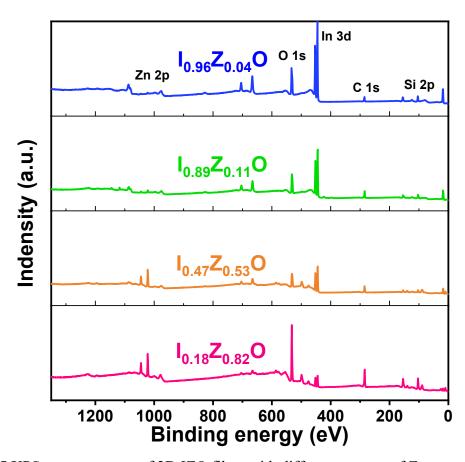
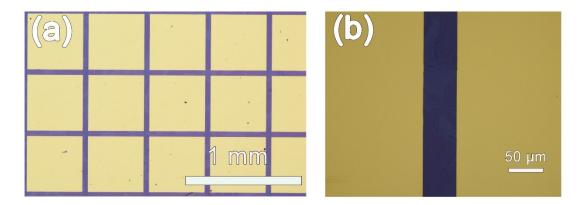
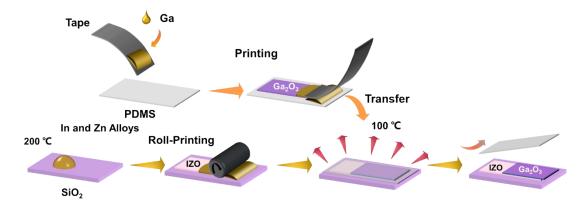




Fig. S5 XPS survey spectra of 2D IZO films with different content of Zn.

Fig. S6 Periodic rectangular patterns of two-dimensional IZO films prepared by pulsed laser deposition on SiO₂ substrates.

 $\label{eq:Fig.S7} \textbf{Fig. S7} \ \ \text{Detailed process schematic for preparing } \ \ \text{IZO/Ga}_2\text{O}_3 \ \text{thin films using liquid In-Zn alloy and liquid Ga}.$

Fig. 8 (a-c) Optical images of Ga₂O₃ layers with different numbers of layers covering IZO.

 $\textbf{Table S1} \ \ \text{The XPS O1s peak fitting results of } I_{0.18}Z_{0.82}O \ \ \text{and} \ \ I_{0.18}Z_{0.82}O/Ga_2O_3.$

Materials	M-O (Stoichiometric) (%)	M-O (Oxygen Deficient) (%)
$I_{0.18}Z_{0.82}O$	51	49
$I_{0.18}Z_{0.82}O/Ga_{2}O_{3}$	38	62