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recognition accuracy achieved with 20 consecutive epochs applied to 5 cells.
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Table S1. Comparative assessment of memristive device performance in multifunctional 
synaptic applications with respect to prior research.



Figure S1. I-V curves acquired from 10 different cells.

Figure S2. (a) 20 cycle endurance properties of the randomly selected 10 cells. (b) The average 
on/off ratio of each 10 cells.
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Figure S3. (a) Schottky emission conduction mechanism fitting in the LRS state of device. (b) 
Schottky emission conduction mechanism fitting in the HRS state of device. (c) Direct 
tunneling conduction mechanism fitting in the LRS state of device. (d) Direct tunneling 
conduction mechanism fitting in the HRS state of device.
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Figure S4. Illustration of conduction mechanism to explain the oxygen vacancy migration 
during the (a) set process and the (b) reset process.
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Figure S5. (a) Pulse schematics for potentiation and depression. (b) Potentiation and 
depression curves acquired through applied pulse schemes. (c) 20-cycle repeated potentiation 
and depression behavior. Potentiation pulses are composed of 50 identical set pulses at 3.5 V 
and 50 read pulses at 2 V. Depression pulses consist of identical reset pulses at -1.5 V and 50 
read pulses at 2 V. All pulse intervals are fixed at 1 ms, and all pulse widths are set to 2 ms. 
Consequently, gradual increase and decrease of conductance values are observed.
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Figure S6 (a) The transition from STM to LTM depending on the number of write pulses. (b) 
PPF index represented as a function of time interval between twin spikes. Two identical pulses 

of 4 V and 500 μs duration were applied at various pulse intervals. (c) Each different EPSC 
Gain acquired depending on the number and amplitude of the set pulse. (d) SADP function 
acquired through applying 10 sequential pulses of increasing amplitude. (e) SRDP function 
acquired through applying 10 sequential pulses of increasing interval. For such experiment, 
write pulses of amplitude and width of 3.5 V and 2 ms was applied, under different numbers. 
Moreover, a series of read pulses were conducted to observe the current decay following the 
application of a stimulus at 2 V for 0.2 s. Sequential application of a small number of write 
pulses results in a gradual current decay as the device returns to its original HRS after short 
period of time. On the contrary, increasing the number of write pulses prevents the current from 
reverting to its initial state. During the same 0.2 s decay period, the increase in write pulses led 
to a gradual facilitation of current, suggesting a transition towards LTM, replicating the 
memory property of the biological brain whereupon the process of rehearsal or under stronger 
stimuli, the transition from STM to LTM occurs.

Figure S7. Schematic illustration of the pattern recognition system using reservoir computing 
system.
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Figure S8. (a) 4-bit reservoir computing implemented from 5 different cells. (b) Pattern 
recognition accuracy achieved with 20 consecutive epochs applied to 5 cells.
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