Supplementary Materials

Diamond photo-electric detectors with introducing silicon-

vacancy color centers

Xiaokun Guo^{1,2}, Bing Yang^{1,2,*}, Xinglai Zhang^{1,2}, Jiaqi Lu^{1,2}, Ming Huang^{1,3}, Nan Huang^{1,2}, Lusheng Liu^{1,2} and Xin Jiang^{4,*}

¹ Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72 Wenhua Road, Shenyang 110016, China;

² School of Materials Science and Engineering, University of Science and Technology of China, No. 72 Wenhua Road, Shenyang 110016, China;

³School of Environment and Chemical Engineering, Shenyang University of Technology, Shenliao West Road 111, Economic & Technological Development Zone 110870 Shenyang, China;

⁴ Institute of Materials Engineering, University of Siegen, No. 9-11 Paul-Bonatz-Str., 57076 Siegen, Germany;

* Correspondence: byang@imr.ac.cn (B.Y.); xjiang@imr.ac.cn (X.J.)

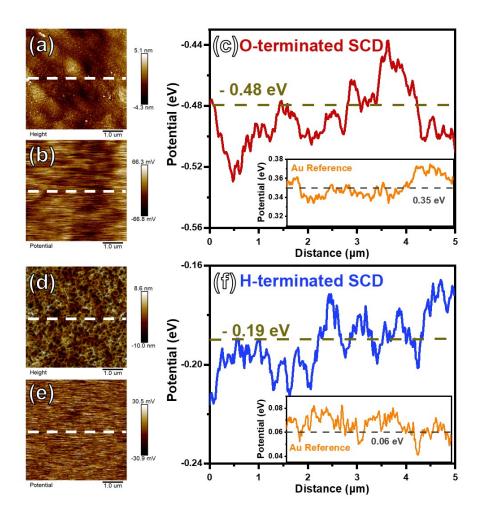


Fig. S1 AFM images of the O-SCD (a) and the H-SCD (d). Corresponding KPFM surface potential maps of the O-SCD (b) and the H-SCD (e). Plots of the surface potential of the O-SCD (c) and the H-SCD (f) were measured along the white dash lines depicted in panels. The work functions of SCDs can be calculated by $\Phi_{SCD} = \Phi_{Au} + V_{SCD} - V_{Au}$, where Φ_{Au} is work function of gold reference (5.1 eV), V is contact potential difference (CPD) depicted in figure (c) and (f). The work functions of O-SCD (Φ_{O-SCD}) and H-SCD (Φ_{H-SCD}) are estimated to be 4.27 eV and 4.85 eV, respectively.

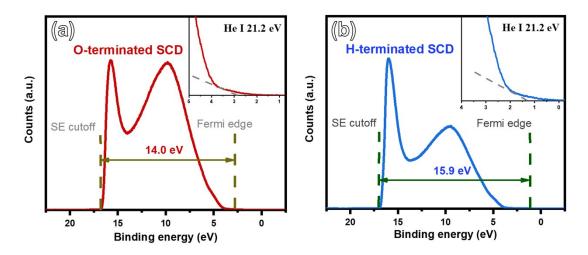


Fig. S2 UPS spectra of the O-Dia (a) and the H-Dia (b) excited by He I photons (hv =21.2 eV). The emery difference between vacuum level (E_{VAC}) and valence band maximum (E_V) can be deduced by $E_{VAC} - E_V = hv - W$, here the W is electron band width that equals the distance between the second electron (SE) cutoff edge and Fermi edge.^{1,2} Electron affinities (χ) can be further derived by: $\chi = E_{VAC} - E_C = E_{VAC} - E_V - E_g$, where the E_C is conduction band minimum and the E_g is band gap of diamond (5.47 eV). The χ_{O-Dia} and χ_{H-Dia} are estimated to be 1.73 eV and -0.17 eV, respectively.

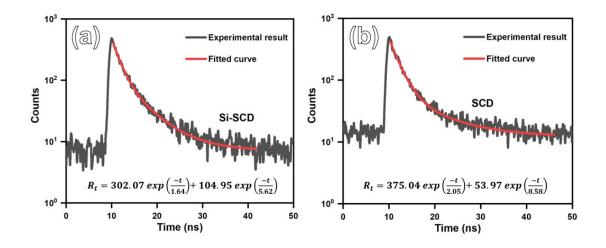


Fig. S3 The TRPL spectra of the Si-SCD (a) and SCD samples. The fitting function of the bi-exponential decay is $R_t = A_1 exp(-t/\tau_1) + A_2 exp(-t/\tau_2)$. The average lifetime can be calculated using $\tau_{ave} = (A_1\tau_1^2 + A_2\tau_2^2)/(A_1\tau_1 + A_2\tau_2)$. The result show that the τ_{ave} of the Si-SCD and SCD is 3.80 ns and 4.50 ns, respectively, indicating a shorter lifetime of photoinduced carriers in Si doped sample. Hence, the defect density in Si-SCD should be higher than the SCD sample, which also act as trapping center and lead to a longer response time of photo-electrical signals.

Tab. **S1** Power densities of light sources with different wavelengths measured using a photometer with a window area of 1 cm².

Wavelength (nm)	220	254	365	400	450	532	650
Power (mW/cm ²)	0.330	0.087	0.134	0.238	0.307	0.250	0.157

Tab. S2 Photocurrents and responsivities of the Si-SCD and the SCD devices under

Wavelength (nm)		220	254	365	400	450	532	650
	$I_{Ph}\left(A ight)$	3.58×10 ⁻⁸	2.37×10 ⁻¹⁰	1.24×10 ⁻¹⁰	1.84×10 ⁻¹⁰	7.03×10 ⁻¹¹	3.72×10 ⁻¹¹	2.68×10-11
Si-SCD	$I_{net}(A)$	3.58×10 ⁻⁸	2.31×10 ⁻¹⁰	1.18×10 ⁻¹⁰	1.84×10 ⁻¹⁰	6.46×10 ⁻¹¹	3.15×10 ⁻¹¹	2.11×10 ⁻¹¹
	R (A/W)	3.62×10-2	8.85×10 ⁻⁴	2.94×10-4	2.57×10-4	7.01×10 ⁻⁵	4.96×10-5	4.47×10 ⁻⁵
	$I_{Ph}\left(A ight)$	4.63×10 ⁻⁸	2.83×10 ⁻¹²	2.49×10 ⁻¹²	1.86×10 ⁻¹²	1.77×10 ⁻¹²	1.72×10 ⁻¹²	1.74×10 ⁻¹²
SCD	$I_{net}\left(A ight)$	4.63×10 ⁻⁸	0.71×10 ⁻¹²	0.89×10-12	0.24×10 ⁻¹²	0.17×10 ⁻¹²	0.12×10 ⁻¹²	0.14×10 ⁻¹²
	R (A/W)	4.68×10-2	2.72×10-6	2.21×10-6	5.97×10-7	1.85×10-7	1.60×10 ⁻⁷	2.97×10-7

illuminations of different wavelengths (15V bias)

References

- [1] Liu Z Q, Chim W K, Chiam S Y, et al. An interface dipole predictive model for high-k dielectric/semiconductor heterostructures using the concept of the dipole neutrality point. Journal of Materials Chemistry, 2012, 22(34): 17887-17892.
- [2] Diederich L, Küttel O M, Aebi P, et al. Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy. Surface science, 1998, 418(1): 219-239..