Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

A polyphosphazene elastomer containing 2,2,2-trifluoroethoxy groups as a dielectric in electrically responsive soft actuators

Cansu Zeytun Karaman^{a,b}, Thulasinath Raman Venkatesan^a, Johannes von Szczepanski^{a,c}, Frank A. Nüesch^{a,b}, and Dorina M. Opris^{a,c}*

^aFunctional Polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology (EMPA), 8600 Duebendorf, Switzerland. ^bEcole Polytechnique Federale de Lausanne(EPFL), 1015 Lausanne, Switzerland ^cEidgenössische Technische Hochschule Zürich (ETHZ)), 8092 Zurich, Switzerland E-mail: dorina.opris@empa.ch

Contents

NMR Spectra	2
GPC Spectrum	2
FTIR Spectra	3
DSC Spectra	4
TGA Spectra	4
Dielectric Spectra	5
Actuation Measurements	5
Weibull probability plot	8
Calculation of electrostatic pressure	8
References	8

NMR Spectra

Figure S1. ³¹P{¹H} NMR spectra (CDCl₃) of monomer Cl₃PNSiMe₃ with cyclohexachlorotriphosphazene (0.7 %<) and some oligomer impurities (0.2 %<) (a); polymer with cyclohexachlorotriphosphazene (0.7 %<) impurity (b); polymer after allyl alkoxide substitution (c).

GPC Spectrum

Figure S2. GPC elugram of poly[bis(2,2,2-trifluoroethoxy)]phosphazene.

Table S1. The molar mass and molar mass distributions result from GPC characterization.

Sample	M _n (g/mol)	M _w (g/mol)	PDI
poly[bis(2,2,2-trifluoroethoxy)]phosphazene	71926	149189	2.074

The polymer was synthesized by cationic polymerization of monomer $Cl_3PNSiMe_3$ in the presence of PCl_5 initiator. In general, the molecular weight is in the range of 10^5 g/mol with a polydispersity index of 1.2 to 2.5.¹

FTIR Spectra

Figure S3. FTIR spectra of the poly[bis(2,2,2-trifluoroethoxy)]phosphazene, E70 and E100.

FTIR spectra were used to determine the functional groups of the polymer and elastomers. Polyphosphazene backbone P-N-P shows an asymmetric stretching peak between 1200 and 1400 cm⁻¹. In general, electro-negative side groups raise the strength of the P-N bond and increase the vibrational frequency. The OCH₂CF₃ substituted P-N asymmetric stretching band was observed at 1270 cm⁻¹.² The symmetric P-N-P stretching appeared at 833 cm⁻¹. P-O-C band was observed at 1416 cm⁻¹, 1163 cm⁻¹, and 955 cm⁻¹.³ The peaks at 2972 cm⁻¹ belong to the aliphatic C-H bond, at 573 cm⁻¹ belong to the C-F bond, and at 1066 cm⁻¹ is associated to the C-O bond stretching of the side group.⁴ Additionally, the allyl peak of the polymer appears at 1650 cm⁻¹. Peaks corresponding to C-SR at 1653 cm⁻¹ and C=O at 1724 cm⁻¹ were observed after the thiol-ene addition reaction with the tetrakis(3-mercaptopropionate) crosslinker. No -SH peaks were detected in the region of 2600 – 2550 cm⁻¹, indicating that all thiol groups were consumed in the thiol-ene addition reaction.

DSC Spectra

Figure S4. DSC graph of the poly[bis(2,2,2-trifluoroethoxy)]phosphazene, and E100.

Differential Scanning Calorimetry was employed to determine the glass transition temperature of both the polymer and the cross-linked material. Upon comparison, it was observed that the polymer exhibits a lower Tg than the cross-linked material, indicating reduced flexibility in the latter due to the presence of a network structure..

TGA Spectra

Figure S5. TGA graph of the poly[bis(2,2,2-trifluoroethoxy)]phosphazene, E70 and E100.

Thermogravimetric analysis (TGA) was conducted using a Perkin Elmer TGA7 with a heating rate of 10 °C min⁻¹ under a nitrogen gas flow. TGA was performed to analyze the thermal stability and decomposition behavior of the polymer and the films. The analysis revealed that polymer decomposition was initiated below 160 °C. In contrast, this occurred at elevated temperatures for the elastomers, which can be attributed to the necessity of higher temperatures to disrupt the cross-linked network. The principal weight loss was observed below 350 °C due to the materials' decomposing into cyclic species.^{5,6}

Dielectric Spectra

Figure S6. a) Arrhenius relaxation plot with VFT fits for **E100**, b) isochronal representation of the conduction-free dielectric loss (ε''_{der}) calculated for **E100** sample between 10⁻¹ and 10⁶ Hz.

Actuation Measurements

Figure S7. Lateral actuation strain of E100 at different electric fields.

Figure S8. An actuator constructed from a 55 μ m thick **E100** film exposed to an electric field of 52 V/ μ m and varying frequencies of 1, 2, 4, and 10 Hz for 100 cycles, respectively, exhibited stable and reversible actuation.

Figure S9. Film **100E**, 55 μ m thick, subjected to different voltages of: a) 2600 V; b) 2700 V; c) 2800 V; d) 2900 V and e) 3000 V at 0.1 s for 100 cycle.

Weibull probability plot

Figure S10. Weibull probability plot of a) E70 and b) E100

Calculation of electrostatic pressure

The electrostatic pressure acting on the films is $p = \varepsilon' \varepsilon_0 E^2$ where p is pressure, E is electric field and, ε' and ε_0 represents relative, and free-space ($\varepsilon_0 = 8.854187817 \times 10^{-12}$ F/m) permittivity, respectively The p is calculated as: 0.32 MPa for **E70** (80 V μ m⁻¹, $\varepsilon' = 5.65$) and

0.17 MPa for Elastosil (85 V μ m⁻¹, ε '= 3.00).⁷

References

- 1 H. R. Allcock, C. A. Crane, C. T. Morrissey, J. M. Nelson, S. D. Reeves, C. H. Honeyman and I. Manners, *Macromolecules*, 1996, **29**, 7740–7747.
- 2 R. E. Singler, N. S. Schneider and G. L. Hagnauer, Polym. Eng. Sci., 1975, 15, 321–338.
- 3 H. R. Allcock, R. L. Kugel and K. J. Valan, *Inorg. Chem.*, 1966, **5**, 1709–1715.
- 4 H. R. Allcock, J. S. Rutt and R. J. Fitzpatrick, *Chem. Mater.*, 1991, **3**, 442–449.
- 5 Z. Tian, A. Hess, C. R. Fellin, H. Nulwala and H. R. Allcock, *Macromolecules*, 2015, **48**, 4301–4311.
- 6 M. Zeldin, W. H. Jo and E. M. Pearce, J. Polym. Sci. Polym. Chem. Ed., 1981, **19**, 917–923.
- 7 R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei and S. Chiba, *Mater. Sci. Eng. C*, 2000, **11**, 89–100.