Supporting Information

Fine control of Ce doped CH₃NH₃PbBr₃ to modulate photoluminescence and carrier characteristics for application in photoconductive photodetector

Xuyang Liu^{a,#}, Chao Shi^{b,#},Dongxu Guang^b, Lijuan Yao^b, Bobo Li^{a,*}, Xuan Fang^{b,*}, Mingxia Qiu^{a,*}, Dan Wu^a, Peigang Han^a

a. College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China.

b. State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun, 130022, P. R. China.

#Xuyang Liu and Chao Shi contributed equally to this work.

*Corresponding author: <u>libobo@sztu.edu.cn</u>, <u>fangx@cust.edu.cn</u>, <u>qiumingxia@sztu.edu.cn</u>

Figure S1. XPS spectra of MAPbBr₃ and MAPbBr₃: Ce films.

Figure S2. Absorption spectra of pristine MAPbBr₃ and MAPbBr₃:Ce films.

Table S1. The measured parameters of PL lifetime. (No. 0, 0.08, 0.09, 0.10, 0.11,

0.12 and 0.13 represent the samples of MAPbBr₃, MAPbBr₃:0.08M Ce,

MAPbBr₃:0.09M Ce, MAPbBr₃:0.10M Ce, MAPbBr₃:0.11M Ce, MAPbBr₃:0.12M

Sample/ Parameter	0	0.08	0.09	0.10	0.11	0.12	0.13
A ₁	6284.321	5433.825	6980.758	7111.302	5833.148	4996.553	1423.611
$ au_1$	0.27457	0.11027	1.44529	1.85004	2.5477	3.06121	0.21214
A_2	4060.192	4236.543	3256.217	12639.8	4000.897	4363.25	8628.462
$ au_2$	1.15137	1.03505	0.50859	0.03052	7.63663	3.06109	1.57833
A ₃	492.63	967.2116	636.3093	932.1124	230.6576	937.315	1742.004
$ au_3$	4.3409	4.27751	4.71459	6.02656	54.00498	9.80396	4.82135
$ au_{\mathrm{avg}}$	1.772981	2.444994	2.00523	3.037938	16.31051	4.698584	2.780197

Ce and MAPbBr₃:0.13M Ce, respectively).

Figure S3. The photocurrent vs. wavelength for MAPbBr₃ based device under the bias voltage of 5 V.

Figure S4. The photocurrent vs. wavelength for MAPbBr₃:Ce based devices under the bias voltage of 5 mV.

Figure S5. The photocurrent vs. wavelength for MAPbBr₃:0.11M Ce based device under different bias voltage.

Figure S6. The on-off curves for (a) MAPbBr₃ and (b) MAPbBr₃:0.11M Ce based device under different excitation wavelength.

Figure S7. The frequency dependent noise current for MAPbBr₃ and MAPbBr₃:Ce based devices, respectively.

Figure S8. The responsive time for (a) MAPbBr₃ and (b) MAPbBr₃:0.11M Ce based device under 520 nm light illumination.

Figure S9. The stability of MAPbBr₃ and MAPbBr₃:Ce based devices under 520 nm light illumination.