Supporting Information

Exploring the interplay of the water-methanol solvent admixture on the optoelectronic properties of spray pyrolyzed fluorine-doped tin oxide thin films and their potential use in solar cell fabrication

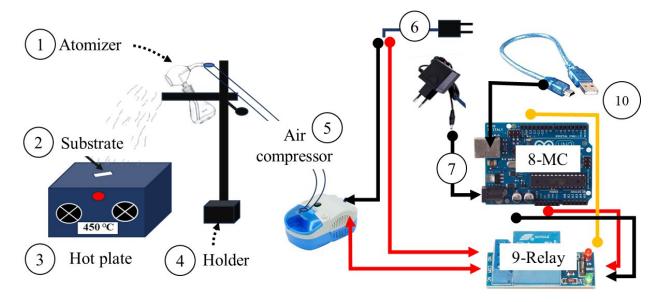
Musarrat Zahra^{1†}, Muhammad Saifullah^{2*†}, Aleena Majeed¹, Samna Hassan¹, Khurram Shehzad³, Mohsin Ali Raza Anjum², Sheeraz Mehboob², Muhammad Rehan⁴, Maria Gul³, Jaweria Ambreen^{1,5**}

¹Department of Chemistry, COMSATS University Islamabad, Park Road, 45550, Islamabad, Pakistan

²Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Nilore 45650, Islamabad, Pakistan

³Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Nilore 45650, Islamabad, Pakistan

⁴Photovoltaic Research Department, Korea Institute of Energy Research, Daejeon, South Korea


⁵Department of Biomedical Engineering & Health Sciences, Faculty of Electrical Engineering,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Muhammad Saifullah (<u>saifi.551@gmail.com</u>) Jaweria Ambreen (<u>Jaweria.ambreen@comsats.edu.pk</u>)

Note: Musarrat Zahra and Muhammad Saifullah have contributed equally in this work.

Supporting information

S1:Assembly of spray pyrolysis setup employed for the fabrication of FTO thin film samples; 1: chromatography atomizer for producing a fine mist of precursor salts solution, 2: SLG substrate for the fabrication of FTO thin film, 3: hot plate to maintain the temperature of 450 °C to ensure pyrolysis reaction), 4: holder for adjusting atomizer at a particular angle, 5: air compressor for compressed air supply to the atomizer to producing fine mist, 6: power supply AC power supply to run an air compressor, 7: DC supply to operate the microcontroller, 8: programmable microcontroller, 9:relay (programmed switch to regulate the power supply to the compressor), and 10:data cable for feeding a particular program from computer to MC.

Sample	TC (200)	TC (101)	TC (211)	TC (110)	
M0	0.58	1.09	0.84	1.47	
M25	0.80	0.95	0.75	1.85	
M50	0.75	0.90	0.48	1.87	
M75	1.78	1.27	0.10	0.55	
M90	2.61	0.86	0.31	0.21	

Table S1: Texture coefficient values of M0, M25, M50, M75, and M90 along (200), (101), (211), and (110) planes.

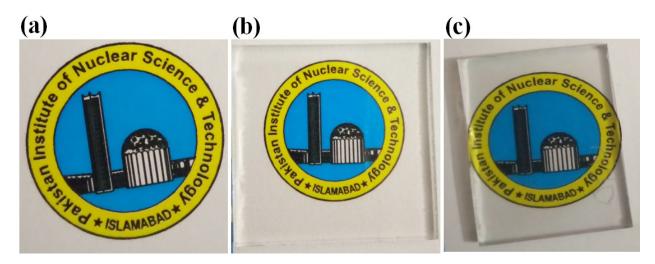


Fig. S2: (a) Monogram seen by the bare eye, (b) visible through the uncoated glass substrate, and (c) visible through M90.

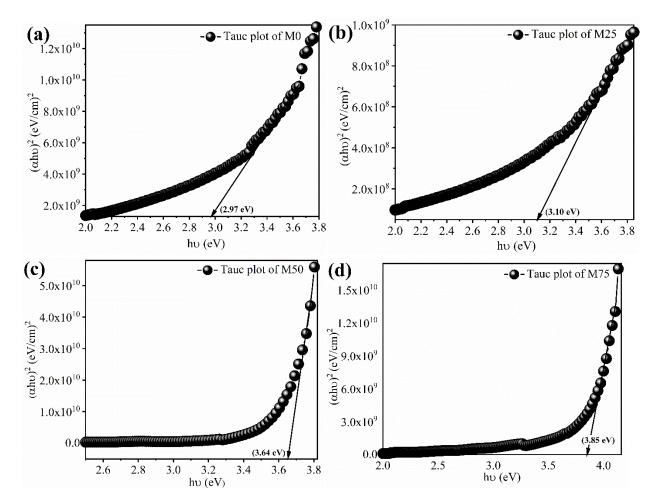


Fig. S3: Taucplots of (a) M0, (b) M25, (c) M50, and (d) M75 to determine their band gaps.

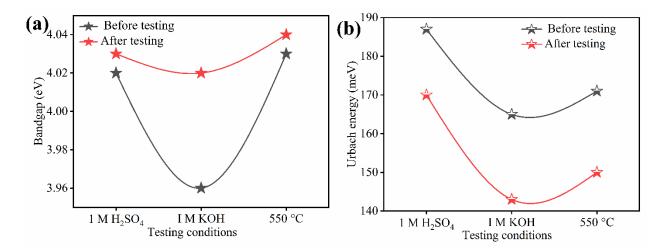


Fig. S4: (a) Bandgap and (b) Urbach energy variation before and after exposing M90 to 1 M H_2SO_4 , 1 M KOH, and 550 °C testing conditions.