Supplementary Information Strong Coupling Mechanism between Ferromagnetism and Piezoelectricity in 2D Ferroelectric Cr*X*S*Y*Br*Z* with High Carrier Mobility

Xiao Shang,^{1,2} Gui-Juan Du,¹ Jun-Hui Wang,² Dan-Yang Zhu,¹ Fu-Chun Liu,^{1,*} Xi-Zhe

Liu,¹ Zeng-Tao Lv,² Feng Guo,²and Xiao-Chun Wang^{2,*}

¹ Institute of Atomic and Molecular Physics, Jilin university, Changchun 130012,

China

² School of Physics Science and Information Technology, Liaocheng University,

Liaocheng 252000, China

^{*} Corresponding author *E*-mail: <u>lfc@jlu.edu.cn</u> and <u>wangxiaochun@</u>tsinghua.org.cn

Transport and piezoelectric properties of CrSBr and CrXBrYSZ monolayers

The relaxed ion piezoelectric stress tensor is determined by combining the contributions from both ions and electrons:¹

$$e_{ijk} = \frac{dP_i}{d\varepsilon_{jk}} = e_{ijk}^{ion} + e_{ijk}^{ele},$$
(S1)

where ε_{jk} is the stress tensor and P_i is the intrinsic polarization tensor. *i*, *j*, and *k* represent the *x*, *y*, and *z* axes, respectively. Similarly, the piezoelectric strain coefficient d_{ijk} can be defined as the derivative of the P_i with respect to the strain tensor σ_{jk} :

$$d_{ijk} = \frac{dP_i}{d\sigma_{ik}},\tag{S2}$$

For simplicity, in the condensed Voigt notation, the third-order tensors d_{ijk} and e_{ijk} are commonly denoted as d_{il} and e_{il} . Here, the subscript *i* corresponds to the *x*, *y*, or *z* axes, indicated by the numbers 1, 2, and 3. The subscript *l* represents the second-order tensor *xx*, *yy*, *zz*, *yz*, *zx*, *xy*, which are denoted by the numbers 1, 2, 3, 4, 5, and 6, respectively.² The fourth-order tensor elastic stiffness coefficient C_{kl} serves as a link connecting e_{il} and d_{ik} :

$$\boldsymbol{e}_{il} = \boldsymbol{d}_{ik} \boldsymbol{C}_{kl}, \tag{S3}$$

where the subscript i in the piezoelectric strain coefficient indicates the polarization direction.

The e_{il} , d_{ik} and C_{kl} are all determined by the lattice symmetry, with each being expressed as a matrix. The CrSBr monolayer possesses a D_{2h} space point group (Pmmn spatial symmetry), indicating a center of symmetry in the vertical direction (*z*-direction). Consequently, it lacks out-of-plane piezoelectricity, leading to a matrix element of 0 for i = 3 in e_{il} and d_{ik} . When atomic substitutions create the CrXSYZBr monolayers from the CrSBr monolayer, the resulting structures exhibit C_{2v} space point group (Pmm2 spatial symmetry). This alteration breaks the vertical symmetry of the CrSBr monolayer, allowing for the expression of e_{il} , C_{kl} and d_{ik} in CrXSYZBr monolayers as follows:

$$e_{il} = \begin{pmatrix} 0 & 0 & 0 & 0 & e_{15} & 0 \\ 0 & 0 & 0 & e_{24} & 0 & 0 \\ e_{31} & e_{32} & e_{33} & 0 & 0 & 0 \end{pmatrix},$$
(S4)
$$C_{kl} = \begin{pmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{pmatrix},$$
(S5)
$$d_{ik} = \begin{pmatrix} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{pmatrix},$$
(S6)

The relational expressions for the out-of-plane piezoelectric coefficients are derived:

$$d_{31} = \frac{Ae_{31} + Be_{32} + Ce_{33}}{G},$$
(S7)

$$d_{32} = \frac{Be_{31} + De_{32} + Ee_{33}}{G},$$
(S8)

$$d_{33} = \frac{Ce_{31} + Ee_{32} + Fe_{33}}{G},$$
(S9)

where
$$A = C_{22}C_{33} - C_{23}^2$$
, $B = C_{13}C_{23} - C_{12}C_{33}$, $C = C_{12}C_{23} - C_{13}C_{22}$, $D = C_{11}C_{33} - C_{13}^2$,

$$E = C_{12}C_{13} - C_{11}C_{23}, F = C_{11}C_{22} - C_{12}^2 \text{ and } G = C_{12}(C_{13}C_{23} - C_{12}C_{33}) + C_{22}(C_{11}C_{33} - C_{13}^2) + C_{23}(C_{13}C_{12} - C_{11}C_{23}).$$

The deformation potential approximation is a widely used method for determining carrier mobility.³⁻⁵ In the case of 2D structures, the calculation of carrier mobility follows a specific formula:⁶

$$\mu_{2D} = \frac{e\hbar^{3}C_{2D}}{k_{B}Tm^{*}\sqrt{m_{x}m_{y}}E_{d}^{2}},$$
(S10)

where *e* is the elementary charge, C_{2D} denotes for the elastic modulus, E_d signifies the deformation potential constant, k_B and \hbar correspond to the Boltzmann constant and the reduced Planck constant, m^* represents for effective mass and the average effective mass of carriers, and T = 300 K is the temperature utilized in these calculations.

The effective masses of electrons (m_e^*) and holes (m_h^*) can be determined by fitting a parabolic function to the band edges (CBM and VBM) using the following expression:

$$\frac{1}{m^*} = \frac{1}{\hbar} \left| \frac{\partial^2 E(k)}{\partial k^2} \right|,\tag{S11}$$

where E(k) represents the energy dependence on the wave vector k at the CBM/VBM in the k_x - k_y plane. The carrier transport characteristics are studied in two distinct directions within the reciprocal lattice space.

The 2D materials' elastic modulus C_{2D} is expressed as following:

$$C_{2D} = \frac{1}{S_{uni}} \frac{\partial^2 E_{tot}}{\partial \varepsilon_{uni}^2},$$
(S12)

where S_{uni} , E_{tot} and ε_{uni} symbolize the optimized unit cell area, total energy and uniaxial strain along the x and y carrier transport directions, respectively. The deformation potential constant E_d is determined using the formula:

$$E_d = \frac{\Delta E_{edge}}{\varepsilon_{uni}},\tag{S13}$$

the term ΔE_{edge} denotes the energy shifting of the band edges relative to the vacuum level.

Table S1 Band gaps (eV) of CrSBr and CrXSYBrZ in GGA+U calculation and GGA+U

Band gap	CrSBr	Cr_2S_2BrH	Cr_2S_2BrF	Cr ₂ S ₂ BrCl	Cr ₂ SSeBr ₂	$CrMoS_2Br_2$
GGA+U	0.65	0.47	0.56	0.69	0.32	0.002
SOC	0.61	0.46	0.19	0.23	0.10	Metal

calculation with spin-orbit coupling (SOC).

Fig. S1 Electronic band structures of (a), (d) CrSBr, (b), (e) Cr₂S₂BrH, (c), (f) Cr₂S₂BrF, (g), (j) Cr₂S₂BrCl, (h), (k) Cr₂SSeBr₂, and (i), (l) CrMoS₂Br₂ in GGA + U calculation ((a) – (c) and (g) – (i)) and GGA + U calculation with SOC ((d) – (f) and (j) – (l)). $U^{Cr} = 3$ eV and $U^{Mo} = 2$ eV, blue and red lines manifest spin-up and spin-down, respectively.

Material	states	$\triangle E$	$Z1^{-}$	$X1^{3+}$	<i>Y</i> 1 ²⁻	S2 ²⁻	$Cr2^{3+}$	Br ²⁻
CrSBr	FM	-64	-0.06	3.25	-0.22	-0.22	3.25	-0.06
	AFM	49	0.05	3.19	0.03	-0.03	-3.19	-0.05
Cr ₂ S ₂ BrH	FM	-36	-0.06	3.28	-0.21	-0.25	3.22	-0.06
	AFM	108	0.05	-3.19	-0.03	0.07	3.13	-0.04
Cr ₂ S ₂ BrF	FM	-36	0.01	3.22	-0.21	-0.24	3.21	-0.05
	AFM	83	-0.04	-3.15	-0.01	-0.03	3.16	0.05
Cr ₂ S ₂ BrCl	FM	-37	-0.04	3.24	-0.22	-0.23	3.24	-0.06
	AFM	75	-0.05	-3.17	0.04	-0.03	-3.18	0.04
Cr ₂ SSeBr ₂	FM	-82	-0.07	3.27	-0.26	-0.24	3.34	-0.06
	AFM	33	0.05	-3.24	-0.05	0.03	3.27	-0.05
CrMoS ₂ Br ₂	FM	-77	0.04	2.65	-0.16	-0.13	3.40	-0.13
	AFM1	109	0.07	2.66	0.09	0.07	-3.19	0.04
	AFM2	109	-0.07	-2.66	-0.09	-0.07	3.19	-0.04

Table S2 Relative total energies $\triangle E$ (meV/unit cell), local spin moments (μ_B) of atoms in CrXSYBrZ monolayers by GGA+U.

Table S3 Intralayer exchange parameters J_1 , J_2 and J_3 of Cr_2S_2BrZ and Cr_2SSeBr_2

monolayers (in units of meV).

(in units of i	ne v j.			
	Cr_2S_2BrH	Cr_2S_2BrF	Cr ₂ S ₂ BrCl	Cr ₂ SSeBr ₂
J_1	2.52	2.23	3.97	4.33
J_2	6.90	5.80	5.45	5.56
J_3	0.84	1.87	2.78	0.54
-				

Material		e33-ele	e33-ion	<i>e</i> 33
CrSBr	GGA	0.0	0.0	0.0
	GGA+U	0.0	0.0	0.0
Cr_2S_2BrH	GGA	-0.57	-0.36	-0.93
	GGA+U	-0.52	-0.35	-0.87
Cr ₂ S ₂ BrF	GGA	-1.70	0.16	-1.54
	GGA+U	-1.57	0.11	-1.46
Cr ₂ S ₂ BrCl	GGA	-0.47	0.07	-0.40
	GGA+U	-0.46	0.07	-0.39
Cr ₂ SSeBr ₂	GGA	0.34	-0.06	0.28
	GGA+U	0.34	-0.06	0.28
CrMoS ₂ Br ₂	GGA	0.64	-0.005	0.64
	GGA+U	0.50	-0.004	0.49

Table S4 The contribution of the piezoelectric stress coefficients e_{33} electron part e_{33} ele and the ion part e_{33} -ion (10⁻¹⁰ C/m) in CrXSYBrZ monolayers.

REFERENCES

- 1. L. Dong, J. Lou and V. B. Shenoy, Acs Nano, 2017, 11, 8242-8248.
- 2. H. N. Zhang, Y. Wu, C. H. Yang, L. H. Zhu and X. C. Wang, *Physical Review B*, 2021, **104**, 235437.
- 3. J. Bardeen and W. Shockley, *Physical Review*, 1950, **80**, 72-80.
- 4. N. N. Hieu, H. V. Phuc, A. I. Kartamyshev and T. V. Vu, *Physical Review B*, 2022, **105**, 075402.
- T. Zhang, Y. D. Ma, L. Yu, B. B. Huang and Y. Dai, *Materials Horizons*, 2019, 6, 1930-1937.
- 6. W. H. Wan, S. Zhao, Y. F. Ge and Y. Liu, *Journal of Physics-Condensed Matter*, 2019, **31**, 435501.