Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Perovskite Nanocrystals Passivated by Aromatics Phosphonic Acid for Highperformance Light-Emitting Diodes

Muhammad Imran Saleem, ^{‡a} Siwei He, ^{‡b} Seung Hyun Kim, ^{a,c} Jae-Wook Kang, ^{*b} and Jeong-Hwan Lee ^{*a,c}

^a Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea ^b Department of Flexible and Printable Electronics LANL-JBNU Engineering Institute-Korea Jeonbuk National University Jeonju 54896, Republic of Korea

^c Program in Semiconductor Convergence, Inha University, Incheon 22212, Republic of Korea

*To whom correspondence should be addressed:

Email: Jeong-hwan.lee@inha.ac.kr (J.-H. Lee), jwkang@jbnu.ac.kr (J.-W. Kang)

List of Figures

Fig. S1 High-resolution TEM images of pristine and BPA-passivated FAPbBr₃ NCs (50 nm, 100 nm): pristine (a-b), 0.5 mg (c-d), 1 mg (e-f), and 1.5 mg BPA-passivated FAPbBr₃ NCs (g-h).

Fig. S2 FT-IR Spectra of pristine and BPA-passivated FAPbBr₃ NCs.

Fig. S3 Absorption spectra of Pristine and BPA-passivated FAPbBr₃ NCs.

Fig. S4 Photographs of FAPbBr₃ NCs under ambient and UV light at the different test times.

Fig. S5 Photographs of pristine and BPA-passivated $FAPbBr_3$ NCs after storage in refrigeration for 14 days. After Storage for 14 days in refrigeration, large aggregates appear in pristine NCs, while there is no aggregation in BPA-passivation $FAPbBr_3$ NCs.

Fig. S6 Photographs of pristine and BPA (1 mg) passivated FAPbBr₃ NC films under the illumination of a UV lamp for 0 and 5 minutes.

Fig. S7 XPS survey of pristine and BPA-passivated FAPbBr₃ NCs.

Fig. S8 (a-b) The P 2p peaks of pristine and BPA-passivated FAPbBr₃ NCs film.

Fig. S9 (a-b) The formation of a novel Pb–O–P covalent bond in BPA-passivated FAPbBr₃ NCs.

Fig. S10 Commission Internationale de l'Eclairage (CIE) coordinates (0.19, 0.76) of PeLEDs.

Fig. S11 EL spectra vs. different applied voltage of PeLEDs.

Fig. S1 High-resolution TEM images of pristine and BPA-passivated FAPbBr₃ NCs (50 nm, 100 nm): pristine (a-b), 0.5 mg (c-d), 1 mg (e-f), and 1.5 mg BPA-passivated FAPbBr₃ NCs (g-h).

Fig. S2 FT-IR spectra of pristine and BPA-passivated FAPbBr₃ NC films.

Fig. S3 Absorption spectra of Pristine and BPA-passivated FAPbBr₃ NCs.

Fig. S4 Photographs of FAPbBr₃ NCs under room light and UV light at the different test times.

Fig. S5 Photographs of pristine and BPA-passivated FAPbBr3 NCs after storage in refrigeration for 14 days. After Storage for 14 days in refrigeration, large aggregates appear in pristine NCs, while there is no aggregation in BPA-passivation FAPbBr₃ NCs.

Fig. S6 Photographs of pristine and BPA (1 mg) passivated FAPbBr₃ NC films under the illumination of a UV lamp for 0 and 5 minutes.

Fig. S7 XPS survey of pristine and BPA-passivated FAPbBr₃ NCs.

Fig. S8 (a-b) The P 2p peaks of pristine and BPA-passivated FAPbBr₃ NCs film.

Fig. S9 (a-b). The formation of a novel Pb–O–P covalent bond in BPA-passivated FAPbBr₃ NCs.

Fig. S10 Commission Internationale de l'Eclairage (CIE) coordinates (0.19, 0.76) of PeLEDs.

Fig. S11 EL spectra vs. different applied voltage of PeLEDs.

Table S1. PL decay Lifetimes of pristine and BPA-passivated NC films

FAPbBr ₃ NCs	A ₁	τ ₁ (ns)	A2	τ ₂ (ns)	τ _{avg.} (ns)
Pristine	0.4	5	0.3	5.12	5
BPA-passivated	0.9	7.8	0.8	3.8	7

 Table S2.
 PLQY vs. storage lifetimes of pristine and BPA-passivated NCs.

PLOY	Pristine	0.5 mg	1 mg	2 mg
		BPA	BPA	BPA
0 Day	77%	86%	90%	83%
14 Day	55%	74%	80%	71%
$R) = \frac{Retain Factor (}{Initial Value} \times 100$	71.1%	86.0%	88.9%	85.5%

Table S3. A comparative table of reported LEDs mainly based on green perovskite NCs or QDs prepared at room temperature.

Perovskite LED	EL Peak (nm)	CE (cd/A)	EQE (%)	Lum. (cd/m²)	Ref.
FAPbBr ₃ -CdSe/ZnS	526	31	7.1	86670	1
FA _{0.9} GA _{0.1} PbBr ₃ NPs	535	91.11	20.48	6179	2
FAPb _{0.7} Sn _{0.3} Br ₃	528	53.5	12.9	10520	3
FA _{0.8} Cs _{0.2} PbBr ₃	532	15.49	3.59	9459	4
Cu ₂ ZnSnS ₄ /FAPbBr ₃	529	-	7.59	27000	5
CsPbBr ₃	513	46.18	12.17	9464	6
CsPbBr ₃	516	-	15.1	5946	7
CsPbBr ₃	512	21.1	6.43	96392	8
FAPbBr ₃	536	76.8	17.1	104	9
BPA-passivated FAPbBr ₃	531	55.83	12.90	29280	This work

References

- 1. X. Xue, M. Li, Z. Liu, C. Wang, J. Xu, S. Wang, H. Zhang, H. Zhong and W. Ji, *Fundam. Res.*, 2022, DOI: <u>https://doi.org/10.1016/j.fmre.2022.08.004</u>.
- 2. K. Rock Son, Y.-H. Kim, D.-H. Kim, W. Ren, V. Murugadoss and T. Geun Kim, *Appl. Surf. Sci.*, 2022, **575**, 151783.
- 3. W. Wang, Z. Wu, T. Ye, S. Ding, K. Wang, Z. Peng and X. W. Sun, *J. Mater. Chem. C*, 2021, **9**, 2115-2122.
- 4. W. Shen, Y. Lu, P. Xia, W. Zhang, Y. Chen, W. Wang, Y. Wu, L. Liu and S. Chen, *Nanoscale*, 2021, **13**, 1791-1799.
- 5. L. Pan, W. Li, X. Zeng, M. Mu, Q. Wang, Y. Chen, C. Li, S. Yang, L. Dai, L. Tao and W. Yang, *Inorgan. Chem. Front.*, 2024, **11**, 5233-5243.
- Z. Zeng, Y. Meng, Z. Yang, Y. Ye, Q. Lin, Z. Meng, H. Hong, S. Ye, Z. Cheng, Q. Lan, J. Wang, Y. Chen, H. Zhang, Y. Bai, X. Jiang, B. Liu, J. Hong, T. Guo, F. Li, Y. Chen and Z. Weng, ACS Appl. Mater. Interf., 2024, 16, 10389-10397.
- 7. J. Dai, H. Roshan, M. De Franco, L. Goldoni, F. De Boni, J. Xi, F. Yuan, H. Dong, Z. Wu, F. Di Stasio and L. Manna, *ACS Appl. Mater. Interf.*, 2024, **16**, 11627-11636.
- 8. Y.-Y. Zhao, Y.-F. Liu, Y.-G. Bi, C.-H. Li, Y.-F. Wang, H.-W. Li, Q.-W. Zhang, C. Lv and Y.-Q. Wu, *Org. Electron.*, 2023, **116**, 106775.
- 9. H. Chen, L. Fan, R. Zhang, C. Bao, H. Zhao, W. Xiang, W. Liu, G. Niu, R. Guo, L. Zhang and L. Wang, *Adv. Opt. Mater.*, 2020, **8**, 1901390.