Structural, Dielectric, and Conduction Behaviour of A-site deficient Sr_xNa_{1-2x}NbO₃ Ceramics

Thomas E. Hooper¹ and Derek C. Sinclair

Department of Materials Science and Engineering, Sir Robert Hadfield Building, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK

Supplementary Information

<u>Contents</u>

List of Figures	2
List of Tables	4

SI Section S1: Analysis of reagents	5
SI Section S2: Analysis of calcined powders	7
SI Section S3: X-ray diffraction and Rietveld Refinements	10
SI Section S4: Microstructural Analysis	14
SI Section S5: Dielectric Spectroscopy	29
SI Section S6: Polarisation vs Electric Field analysis	35
SI Section S7: Impedance Spectroscopy and Arrhenius plots	36

¹ Corresponding author: thomas.elliot.hooper@gmail.com

List of Figures

Figure S1: Secondary electron images of reagents (a) SrCO₃, (b) Na₂CO₃, and (c) Nb₂O₅ after dehydration.

Figure S2: Stacked X-ray diffraction patterns from $10-100^{\circ} 2\theta$ (Cu-K α source) of (a) SrCO₃ (fully indexed to orthorhombic *Pnma*), (b) Na₂CO₃ (fully indexed to orthorhombic *Pca*2₁), and (c) Nb₂O₅ (fully indexed to orthorhombic *C*2/*c*) reagents after dehydration.

Figure S3: Particle size distributions of powders used for pressing for (a) NaNbO₃ (x = 0.00), (b) $Sr_{0.05}Na_{0.90}NbO_3$ (x = 0.05), (c) $Sr_{0.10}Na_{0.80}NbO_3$ (x = 0.10), (d) $Sr_{0.15}Na_{0.70}NbO_3$ (x = 0.15), (e) $Sr_{0.20}Na_{0.6}NbO_3$ (x = 0.20), and (f) $Sr_{0.25}Na_{0.50}NbO_3$ (x = 0.25). 500 particles across 3 secondary electron micrographs were measured.

Figure S4: Average d_{10} , d_{50} , and d_{90} against composition for powders used for pressing. Dotted and dashed lines represent ± 1 and ± 2 standard deviations (σ), respectively.

Figure S5: XRD patterns from 10-100° 2θ and step size 0.02° for calcined powders after first and second calcination for all compositions.

Figure S6: Rietveld refinements for (a) NaNbO₃, (b) Sr_{0.05}Na_{0.90}NbO₃, (c) Sr_{0.10}Na_{0.80}NbO₃, (d) Sr_{0.15}Na_{0.70}NbO₃, (e) Sr_{0.20}Na_{0.60}NbO₃, and (f) Sr_{0.25}Na_{0.50}NbO₃

Figure S7: Pseudo-monoclinic tilt angle $(2\tan^{-1}(c_0/b_0))$, where c_0 and b_0 represent the orthorhombic lattice parameters) against composition.

Figure S8: Geometric density, theoretical density calculated using lattice parameters from XRD refinements, and relative density against composition. Error bars correspond to standard error from the measurements of 5 samples.

Figure S9: Secondary electron micrographs of polished and thermally etched samples for compositions (a) NaNbO₃, (b) Sr_{0.05}Na_{0.90}NbO₃, (c) Sr_{0.10}Na_{0.80}NbO₃, (d) Sr_{0.15}Na_{0.70}NbO₃, (e) Sr_{0.20}Na_{0.60}NbO₃, and (f) Sr_{0.25}Na_{0.50}NbO₃. Particle size determined by measuring 200 individual particles across 3 secondary electron micrographs using ImageJ software.

Figure S10: Backscatter electron micrographs and corresponding EDX maps of polished and thermally etched samples of (a) NaNbO₃, (b) $Sr_{0.05}Na_{0.90}NbO_3$, (c) $Sr_{0.10}Na_{0.80}NbO_3$, (d) $Sr_{0.15}Na_{0.70}NbO_3$, (e) $Sr_{0.20}Na_{0.60}NbO_3$, and (f) $Sr_{0.25}Na_{0.50}NbO_3$. Bright regions in (c) and (d) can be identified as NaNb₃O₈ and in (f) as tetragonal tungsten bronze $Sr_2NaNb_5O_{15}$

Figure S11: Backscattered electron micrograph of polished and thermally etched $Sr_{0.10}Na_{0.80}NbO_3$ bulk ceramic, annotated with point spectra positions.

Figure S12: Backscattered electron micrograph of polished and thermally etched Sr_{0.15}Na_{0.70}NbO₃ bulk ceramic, annotated with point spectra positions.

Figure S13: Point spectra across a grain in polished and thermally etched Sr_{0.20}Na_{0.60}NbO₃ and corresponding atomic percentage to demonstrate core-shell microstructure.

Figure S14: Backscattered electron micrograph of polished and thermally etched Sr_{0.25}Na_{0.50}NbO₃ bulk ceramic, annotated with point spectra positions.

Figure S15: Sr²⁺ and Na⁺ occupancies extracted from Rietveld refinements (solid data points) and average at% calculated from EDX mapping (hollow data points) against composition. Dashed lines correspond to nominal Sr_xNa_{1-2x}NbO₃

Figure S16: (a) Real component of permittivity (ϵ ') and (b) tan δ at fixed frequencies against temperature for NaNbO₃ (x = 0.00)

Figure S17: (a) Real component of permittivity (ϵ ') and (b) tan δ at fixed frequencies against temperature for Sr_{0.05}Na_{0.90}NbO₃ (x = 0.05). Sub-zero tan δ are due to electrical noise (inductance) from electrical testing equipment.

Figure S18: (a) Real component of permittivity (ϵ ') and (b) tan δ at fixed frequencies against temperature for Sr_{0.10}Na_{0.80}NbO₃ (x = 0.10)

Figure S19: (a) Real component of permittivity (ϵ ') and (b) tan δ at fixed frequencies against temperature for Sr_{0.15}Na_{0.70}NbO₃ (x = 0.15)

Figure S20: (a) Real component of permittivity (ϵ ') and (b) tan δ at fixed frequencies against temperature for Sr_{0.20}Na_{0.60}NbO₃ (x = 0.20)

Figure S21: (a) Real component of permittivity (ϵ ') and (b) tan δ at fixed frequencies against temperature for Sr_{0.25}Na_{0.50}NbO₃ (x = 0.25)

Figure S22: Arrhenius plots of conductivity calculated using M" peak height at the relaxation frequency for (a) NaNbO₃, (b) $Sr_{0.05}Na_{0.90}NbO_3$, (c) $Sr_{0.10}Na_{0.80}NbO_3$, (d) $Sr_{0.15}Na_{0.70}NbO_3$, (e) $Sr_{0.20}Na_{0.60}NbO_3$, and (f) $Sr_{0.25}Na_{0.50}NbO_3$.

Figure S23: High temperature and low temperature activation energies extrapolated from Arrhenius plots of conductivity against composition.

List of Tables

Table S1: Spectrum number according to Figure S11, and corresponding atomic percentage of ions. Highlighted cells correspond to regions of bright contrast.

Table S2: Spectrum number according to Figure S12, and corresponding atomic percentage of ions. Highlighted cells correspond to regions of bright contrast.

Table S3: Spectrum number according to Figure S14, and corresponding atomic percentage of ions. Highlighted cells correspond to regions of bright contrast.

Table S4: Maximum polarisation (P_{lax}), remnant polarisation (P_R), coercive filed (E_C), recoverable energy density (W_{rec}), energy loss density (W_{loss}), thickness (S) over electrode radius (r), and efficiency ($W_{rec}/W_{rec}+W_{loss}$) for Sr_xNa_{1-2x}NbO₃ (x = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25) at 40 kV.cm⁻¹

SI Section S1: Analysis of Reagents

Figure S1: Secondary electron images of reagents (a) $SrCO_3$, (b) Na_2CO_3 , and (c) Nb_2O_5 after dehydration.

Figure S2: Stacked X-ray diffraction patterns from 10-100° 20 (Cu-K α source) of (a) SrCO₃ (fully indexed to orthorhombic *Pnma*), (b) Na₂CO₃ (fully indexed to orthorhombic *Pca*2₁), and (c) Nb₂O₅ (fully indexed to orthorhombic *C*2/*c*) reagents after dehydration.

SI Section S2: Analysis of calcined powders

Figure S3: Particle size distributions of powders used for pressing for (a) NaNbO₃ (x = 0.00), (b) $Sr_{0.05}Na_{0.90}NbO_3$ (x = 0.05), (c) $Sr_{0.10}Na_{0.80}NbO_3$ (x = 0.10), (d) $Sr_{0.15}Na_{0.70}NbO_3$ (x = 0.15), (e) $Sr_{0.20}Na_{0.6}NbO_3$ (x = 0.20), and (f) $Sr_{0.25}Na_{0.50}NbO_3$ (x = 0.25). 500 particles across 3 secondary electron micrographs were measured.

Figure S4: Average d_{10} , d_{50} , and d_{90} against composition for powders used for pressing. Dotted and dashed lines represent ± 1 and ± 2 standard deviations (σ), respectively.

Figure S5: XRD patterns from 10-100° 2 θ and step size 0.02° for calcined powders after first and second calcination for all compositions.

Figure S6: Rietveld refinements for (a) NaNbO₃, (b) Sr_{0.05}Na_{0.90}NbO₃, (c) Sr_{0.10}Na_{0.80}NbO₃, (d) Sr_{0.15}Na_{0.70}NbO₃, (e) Sr_{0.20}Na_{0.60}NbO₃, and (f) Sr_{0.25}Na_{0.50}NbO₃

Figure S7: Pseudo-monoclinic tilt angle $(2tan^{-1}(c_0/b_0))$, where c_0 and b_0 represent the orthorhombic lattice parameters) against composition.

Figure S8: Geometric density, theoretical density calculated using lattice parameters from XRD refinements, and relative density against composition. Error bars correspond to standard error from the measurements of 5 samples.

Figure S9: Secondary electron micrographs of polished and thermally etched samples for compositions (a) NaNbO₃, (b) Sr_{0.05}Na_{0.90}NbO₃, (c) Sr_{0.10}Na_{0.80}NbO₃, (d) Sr_{0.15}Na_{0.70}NbO₃, (e) Sr_{0.20}Na_{0.60}NbO₃, and (f) Sr_{0.25}Na_{0.50}NbO₃. Particle size determined by measuring 200 individual particles across 3 secondary electron micrographs using ImageJ software.

. Nb Lα1

25µm

Sr Lα1

Nb Lα1

100µm

100µm

Sr Lα1

100µm

Na Kα1_2

Na Kα1_2

Figure S10: Backscatter electron micrographs and corresponding EDX maps of polished and thermally etched samples of (a) NaNbO₃, (b) $Sr_{0.05}Na_{0.90}NbO_3$, (c) $Sr_{0.10}Na_{0.80}NbO_3$, (d) $Sr_{0.15}Na_{0.70}NbO_3$, (e) $Sr_{0.20}Na_{0.60}NbO_3$, and (f) $Sr_{0.25}Na_{0.50}NbO_3$. Bright regions in (c) and (d) can be identified as NaNb₃O₈ and in (f) as tetragonal tungsten bronze $Sr_2NaNb_5O_{15}$

Figure S11: Backscattered electron micrograph of polished and thermally etched Sr_{0.10}Na_{0.80}NbO₃ bulk ceramic, annotated with point spectra positions.

Table S1: Spectrum number according to Figure S11, and corresponding atomic percentage of ions. Highlighted cells correspond to regions of bright contrast.

Spectrum	O (at%)	Na (at%)	Sr (at%)	Nb (at%)
105	63.22	8.74	0.3	27.73
106	61.53	9.08	0.47	28.93
107	62.8	9.87	0.5	26.82
108	62.43	9.01	0.18	28.39
109	57.29	16.14	2.18	24.4
110	57.53	16.59	2.1	23.78
111	58.05	15.83	2.11	24.02
112	57.17	16.67	2.13	24.03
113	57.7	16.23	2.15	23.92
114	58.74	16.23	2.06	22.96
115	57.52	15.8	2.1	24.58

Figure S12: Backscattered electron micrograph of polished and thermally etched Sr_{0.15}Na_{0.70}NbO₃ bulk ceramic, annotated with point spectra positions.

Table S2: Spectrum number according to Figure S12, and corresponding atomic percentage
of ions. Highlighted cells correspond to regions of bright contrast.

Spectrum	0	Na	Sr	Nb
116	63.49	7.29	1.89	27.33
117	63.3	7.59	1.8	27.32
118	62.33	7.51	1.83	28.34
119	63.21	7.46	1.79	27.55
120	58.67	14.3	3.25	23.79
121	58.56	14.28	3.18	23.98
122	58.56	14.25	3.24	24.01
123	57.84	14.53	3.07	24.56

124	57.29	14.53	3.41	24.78
125	59.72	14.55	2.91	22.82
126	58.28	14.07	3.38	24.27
127	57.96	14.33	3.21	24.51
128	58.14	14.85	3	24.01
129	58.17	14.1	3.29	24.44
130	58.36	14.3	3.19	24.15
131	64.44	8.15	1.83	25.58
132	61.88	7.43	1.97	28.72
133	59.27	13.94	3.19	23.59
134	58.47	13.93	3.32	24.28
135	58.88	13.63	3.47	24.03
136	58.27	14.13	3.28	24.32
137	59.66	14.01	3.14	23.19
138	57.49	14.33	3.21	24.97

Figure S13: Point spectra across a grain in polished and thermally etched Sr_{0.20}Na_{0.60}NbO₃ and corresponding atomic percentage to demonstrate core-shell microstructure.

Figure S14: Backscattered electron micrograph of polished and thermally etched Sr_{0.25}Na_{0.50}NbO₃ bulk ceramic, annotated with point spectra positions.

Table S3: Spectrum number according to Figure S14, and corresponding atomic percentage of ions. Highlighted cells correspond to regions of bright contrast.

Spectrum	O (at%) Na (at%) Sr (at%) Na		O (at%) Na (at%) Sr (a		O (at%)	Na (at%) Sr (at%) Nb		Nb (at%)
73	61.25	4.95	8.09	25.71				
74	63.05	4.28	8.36	24.32				
75	58.45	10.41	5.67	25.48				
76	60.43	4.13	9.02	26.42				
77	44.97	9.85	7.68	37.5				
78	59.76	4.55	8.88	26.82				
79	61.37	5.25	8.03	25.35				

80	60.47	5.34	7.96	26.23
81	59.34	10.31	5.58	24.77
82	58.85	10.56	5.64	24.95
83	58.84	10.35	5.59	25.22
84	60.53	4.29	9.14	26.05
85	58.28	10.69	5.7	25.33
86	59.3	10.38	5.63	24.69

Figure S15: Sr^{2+} and Na^+ occupancies extracted from Rietveld refinements (solid data points) and average at% calculated from EDX mapping (hollow data points) against composition. Dashed lines correspond to nominal $Sr_xNa_{1-2x}NbO_3$

SI Section S5: Dielectric Spectroscopy

Figure S16: (a) Real component of permittivity (ϵ ') and (b) tan δ at fixed frequencies against temperature for NaNbO₃ (x = 0.00). Sub-zero tan δ are due to electrical noise (inductance) from electrical testing equipment.

Figure S17: (a) Real component of permittivity (ϵ ') and (b) tan δ at fixed frequencies against temperature for Sr_{0.05}Na_{0.90}NbO₃ (x = 0.05). Sub-zero tan δ are due to electrical noise (inductance) from electrical testing equipment.

Figure S18: (a) Real component of permittivity (ϵ ') and (b) tan δ at fixed frequencies against temperature for Sr_{0.10}Na_{0.80}NbO₃ (x = 0.10)

Figure S19: (a) Real component of permittivity (ϵ ') and (b) tan δ at fixed frequencies against temperature for Sr_{0.15}Na_{0.70}NbO₃ (x = 0.15)

Figure S20: (a) Real component of permittivity (ϵ ') and (b) tan δ at fixed frequencies against temperature for Sr_{0.20}Na_{0.60}NbO₃ (x = 0.20). Sub-zero tan δ are due to electrical noise (inductance) from electrical testing equipment.

Figure S21: (a) Real component of permittivity (ϵ ') and (b) tan δ at fixed frequencies against temperature for Sr_{0.25}Na_{0.50}NbO₃ (x = 0.25)

SI Section S6: Polarisation vs Electric Field analysis

Table S4: Maximum polarisation (P_{max}), remnant polarisation (P_R), coercive filed (E_C), recoverable energy density (W_{rec}), energy loss density (W_{loss}), thickness (S) over electrode radius (r), and efficiency ($W_{rec}/W_{rec}+W_{loss}$) for Sr_xNa_{1-2x}NbO₃ (x = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25) at 40 kV.cm⁻¹

Sr _x Na _{1-2x} NbO ₃	P _{max} (µC.cm ⁻²)	P _R (µC.cm ⁻²)	Ec (kV.cm ⁻¹)	W _{rec} (mJ.cm ⁻³)	W _{loss} (mJ.cm ⁻³)	S/r	η (%)
0	1.03	0.31	9.94	12.4	16.5	0.34	42.9
0.05	1.49	0.37	9.90	20.5	22.3	0.36	47.8
0.1	6.63	4.60	17.58	25.3	120.3	0.37	17.4
0.15	14.19	6.43	8.01	100.5	162.9	0.35	38.2
0.20	9.63	0.30	1.60	173.4	20.9	0.45	89.2
0.25	6.57	2.04	11.85	71.4	96.7	0.42	42.5

SI Section S7: Impedance Spectroscopy and Arrhenius plots

Figure S22: Arrhenius plots of conductivity calculated using M" at the relaxation frequency for (a) NaNbO₃, (b) $Sr_{0.05}Na_{0.90}NbO_3$, (c) $Sr_{0.10}Na_{0.80}NbO_3$, (d) $Sr_{0.15}Na_{0.70}NbO_3$, (e) $Sr_{0.20}Na_{0.60}NbO_3$, and (f) $Sr_{0.25}Na_{0.50}NbO_3$.

Figure S23: High temperature and low temperature activation energies extrapolated from Arrhenius plots of conductivity against composition.