Supporting information

## Deconstructing excitation transitions in Dy<sup>3+</sup>-doped CaWO<sub>4</sub> to

## develop a new ratiometric luminescent thermometry for

## achieving ultra-high sensing sensitivity

ianrui Liu,<sup>a,b</sup> Baosheng Cao,<sup>b,\*</sup> Miao Gao,<sup>b</sup> Lulu Qiu,<sup>b</sup> Yujie Weng,<sup>b</sup> Yangyang He,<sup>b</sup> Xiaoguang Han,<sup>a,\*</sup> Bin Dong<sup>b</sup>

<sup>1</sup> Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, P. R. China

<sup>2</sup> Key Laboratory of Photosensitive Material and Device of Liaoning Province, Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission & School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, P. R. China

\*Corresponding Authors. E-mail: bscao@dlnu.edu.cn (B. Cao), xghan@dlmu.edu.cn (X. Han)



**Figure S1.** PLE spectra of CaWO<sub>4</sub>:1Dy phosphors at the temperature range of  $300 \sim 650$  K by monitoring emissions at  $\lambda_{em} = 479$  nm (a), 488 nm (b), and 575 nm (c).



**Figure S2**. PLE intensities of various  $Dy^{3+}$  excitation branches as a function of temperature for CaWO<sub>4</sub>:1Dy phosphors by monitoring emissions at  $\lambda_{em} = 575$  nm.



Figure S3. PL spectra of CaWO<sub>4</sub>:1Dy phosphors at the temperature range of  $300 \sim 650$  K for  $\lambda_{ex} = 259$  nm.



**Figure S4.** Fit of the temperature-dependent PLE intensity ratio of O-Dy to various  $Dy^{3+}$  excitation branches by Eq. (1).



**Figure S5.** Fit of the temperature-dependent PLE intensity ratio of O-W to various  $Dy^{3+}$  excitation branches by Eq. (1).



**Figure S6.** Absolute sensitivity  $S_a$  (a,b) and relative sensitivity  $S_r$  (c,d) as a function of temperature for the EIR schemes of O-Dy and O-W to various Dy<sup>3+</sup> excitation branches.



**Figure S7.** PLE intensity ratio of O-Dy/O-W/CTB to various Dy<sup>3+</sup> excitation branches as a function of temperature for CaWO<sub>4</sub>:1Dy phosphors.

|     |                  | Transition                     |                                                  | Wavelength (nm) | Energy<br>(cm <sup>-1</sup> ) | Transition                |                                              | Wavelength (nm) | Energy<br>(cm <sup>-1</sup> ) |
|-----|------------------|--------------------------------|--------------------------------------------------|-----------------|-------------------------------|---------------------------|----------------------------------------------|-----------------|-------------------------------|
| PLE | СТВ              | O-Dy                           |                                                  | 250             | 40000                         |                           |                                              |                 |                               |
|     |                  | O-W                            |                                                  | 267             | 37453                         |                           |                                              |                 |                               |
|     |                  | ${}^{4}F_{3/2}$                |                                                  | 288             | 34722                         |                           | $({}^{4}G, {}^{2}F)_{7/2}$                   | 321             | 31153                         |
|     | Dy <sup>3+</sup> |                                | ${}^{4}P_{1/2}$                                  | 293             | 34130                         |                           | ${}^{6}P_{3/2}$                              | 327             | 30581                         |
|     |                  | <sup>6</sup> H <sub>13/2</sub> | $({}^{4}\mathrm{L}, {}^{4}\mathrm{K})_{13/2}$    | 296             | 33784                         |                           | ${}^{4}I_{9/2}$                              | 335             | 29851                         |
|     |                  | $\rightarrow$                  | ${}^{4}G_{9/2}$                                  | 300             | 33333                         |                           | $({}^{4}\mathrm{F}, {}^{4}\mathrm{D})_{5/2}$ | 339             | 29499                         |
|     |                  |                                | $({}^{4}G, {}^{4}P)_{5/2}$                       | 303             | 33003                         | ${}^{6}\mathrm{H}_{15/2}$ | <sup>6</sup> P <sub>7/2</sub>                | 352             | 28409                         |
|     |                  |                                | ( <sup>4</sup> G, <sup>4</sup> H) <sub>7/2</sub> | 306             | 32680                         | $\rightarrow$             | <sup>6</sup> P <sub>5/2</sub>                | 367             | 27248                         |
|     |                  |                                |                                                  |                 |                               |                           | ${}^{4}I_{13/2}, {}^{4}F_{7/2}$              | 389             | 25707                         |
|     |                  |                                |                                                  |                 |                               |                           | ${}^{4}G_{11/2}$                             | 428             | 23364                         |
|     |                  |                                |                                                  |                 |                               |                           | ${}^{4}I_{15/2}$                             | 455             | 21978                         |
|     |                  |                                |                                                  |                 |                               |                           | ${}^{4}F_{9/2}$                              | 476             | 21008                         |
| PL  | CTB              |                                |                                                  | 410             | 24390                         |                           |                                              |                 |                               |
|     | Dy <sup>3+</sup> | ${}^{4}F_{9/2} \rightarrow$    | <sup>6</sup> H <sub>15/2</sub>                   | 482             | 20747                         |                           |                                              |                 |                               |
|     |                  |                                | ${}^{6}\mathrm{H}_{13/2}$                        | 575             | 17391                         |                           |                                              |                 |                               |
|     |                  |                                | <sup>6</sup> H <sub>11/2</sub>                   | 663             | 15083                         |                           |                                              |                 |                               |

**Table S1.** Experimental PLE and PL transitions in CaWO<sub>4</sub>:Dy phosphors.

**Table S2.** Fitting parameters of  $EIR = a \cdot exp\left(-\frac{b}{T}\right) + c$  for the various EIR schemes in CaWO<sub>4</sub>:Dy phosphors.

| EID ag                  | homo | EID rongo    | Fitting parameter |         |        |  |  |
|-------------------------|------|--------------|-------------------|---------|--------|--|--|
|                         | neme | EIK lange    | а                 | b       | с      |  |  |
|                         | 300  | 13.1~69.7    | 1998.11           | 2042.09 | 7.17   |  |  |
|                         | 303  | 36.8~180     | 9572.44           | 2670.45 | 30.7   |  |  |
|                         | 321  | 10.8~55.9    | 9114.04           | 3303.78 | 10.4   |  |  |
|                         | 327  | 3.47~30.3    | 8369.77           | 3786.94 | 3.94   |  |  |
|                         | 335  | 18.0~68.3    | 2534.87           | 4188.56 | 16.04  |  |  |
|                         | 339  | 10.9~116.3   | 6364.64           | 2534.87 | 10.6   |  |  |
| 0-Dy/                   | 352  | 0.42~2.21    | 113.69            | 2622.95 | 0.38   |  |  |
|                         | 367  | 0.90~5.00    | 269.19            | 2646.62 | 0.81   |  |  |
|                         | 389  | 0.36~1.95    | 103.02            | 2638.39 | 0.32   |  |  |
|                         | 428  | 3.48~17.19   | 933.85            | 2666.36 | 3.15   |  |  |
|                         | 455  | 1.01~5.68    | 313.03            | 2664.81 | 0.91   |  |  |
|                         | 476  | 2.80~14.12   | 816.34            | 2705.41 | 2.55   |  |  |
|                         | 300  | 17.23~168.53 | 2636.79           | 1671.67 | 4.21   |  |  |
|                         | 303  | 48.32~289.21 | 1155.59           | 804.21  | -44.02 |  |  |
|                         | 321  | 14.11~101.40 | 2318.75           | 2011.93 | 14.62  |  |  |
|                         | 327  | 4.56~83.75   | 746.21            | 1890.04 | 4.46   |  |  |
|                         | 335  | 23.69~120.30 | 1620.95           | 1917.46 | 23.96  |  |  |
| $\mathbf{O} \mathbf{W}$ | 339  | 14.38~190.83 | 1034.95           | 899.27  | -45.24 |  |  |
| 0-w/                    | 352  | 0.55~3.88    | 17.84             | 941.89  | -0.3   |  |  |
|                         | 367  | 1.18~8.81    | 43.65             | 1004.29 | -0.53  |  |  |
|                         | 389  | 0.47~3.43    | 16.42             | 977.58  | -0.23  |  |  |
|                         | 428  | 4.57~30.22   | 135.94            | 935.68  | -2.05  |  |  |
|                         | 455  | 1.32~9.99    | 49.99             | 1016.02 | -0.56  |  |  |
|                         | 476  | 3.68~24.87   | 117.5             | 981.7   | -1.22  |  |  |
|                         | 300  | 30.35~255.57 | 8867.92           | 2176.43 | 22.09  |  |  |
|                         | 303  | 85.11~362.53 | 9344.32           | 2014.47 | 76.61  |  |  |
|                         | 321  | 24.86~157.34 | 2822.27           | 1943.52 | 22.06  |  |  |
|                         | 327  | 8.03~83.75   | 3454.23           | 2594.56 | 10.09  |  |  |
|                         | 335  | 41.73~188.56 | 10211.85          | 2819.27 | 44.85  |  |  |
|                         | 339  | 25.32~303.27 | 3008.21           | 1386.49 | -9.48  |  |  |
|                         | 352  | 0.98~6.09    | 57.58             | 1505.53 | 0.56   |  |  |
|                         | 367  | 2.08~13.81   | 141.45            | 1557.71 | 1.23   |  |  |
|                         | 389  | 0.83~5.37    | 53.16             | 1535.8  | 0.49   |  |  |
|                         | 428  | 8.05~47.38   | 449.24            | 1517.6  | 4.98   |  |  |
|                         | 455  | 2.33~15.67   | 163.03            | 1571.49 | 1.40   |  |  |
|                         | 476  | 6.49~38.99   | 394.9             | 1561.93 | 4.23   |  |  |