Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

## **Supplementary Information**

## Near stoichiometric lithium niobate crystal with dramatically enhanced piezoelectric performance for high temperature acceleration sensing

Guoliang Wang<sup>a</sup>, Fulei Wang<sup>b,c</sup>, Xi Gao<sup>a</sup>, Dongzhou Wang<sup>\*b,c</sup>, Wei Song<sup>d</sup>, Yanlu Li<sup>\*a</sup>, Xueliang Liu<sup>a</sup>, Yuanhua Sang<sup>a</sup>, Fapeng Yu<sup>\*a</sup> and Xian Zhao<sup>a</sup>

<sup>a</sup> State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China

<sup>b</sup> Jinan Institute of Quantum Technology, Jinan 250101, China

<sup>c</sup> Jinan Branch, Hefei National Laboratory, Jinan 250101, China

<sup>d</sup> CETC Deqing Huaying Electronics Co., Ltd, Zhejiang 313200, China



Fig. S1 Distortion model of the MO<sub>6</sub> polyhedron.



**Fig. S2** Crystal cuts for evaluation of the electro-elastic constants [(a) Z-square plate; (b) Z bar; (c) X-square plate; (d) ZX plate; (e) YX plate; (f) ZY plate; (g) YZt/ $\theta$  ( $\theta$ = 30°, 45° and 60°); (h) XYt/ $\theta$  ( $\theta$ = 60°)]



**Fig. S3** Variations of (a) electromechanical coupling factors, (b) piezoelectric coefficients as a function of temperatures for NSLN and CLN crystals.



**Fig. S4** Variations of piezoelectric voltage coefficients  $g_{ij}$  as a function of temperatures for (a) NSLN and (b) CLN crystals.

It was found that the piezoelectric voltage coefficients  $g_{ij}$  for NSLN and CLN all showed a decreasing trend with temperature, as shown in Fig. S4. There was a good observation that while the  $d_{ij}$  was relatively stable with temperature, the increase in  $\varepsilon_{ij}$  with temperature leaded to a slight decrease in  $g_{ij}$  (since  $g_{ij} = d_{ij} / \varepsilon_{ij}$ ) for NSLN and CLN crystals. Clearly that the  $g_{15}$  demonstrated maximum values, which were represented by 98.9×10<sup>-3</sup> Vm N<sup>-1</sup> and 89.2×10<sup>-3</sup> Vm N<sup>-1</sup> for NSLN and CLN crystals at room temperature.



Fig. S5 Average variations of the piezoelectric coefficients  $d_{15}$  as a function of temperatures for NSLN and CLN crystals.



Fig. S6 Variations of the effective piezoelectric coefficients  $d_{15}$ ' rotated around the X-axis with different angles as a function of temperatures for NSLN crystal.

| Crystal cuts           | Vibration           | Material                                        | Related equations                                                                                                                                                  |
|------------------------|---------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | modes               | constants                                       |                                                                                                                                                                    |
| X plate                | /                   | $arepsilon_{II}^{T} / arepsilon_{0}$            | $\frac{\varepsilon_{ii}^{^{T}}}{\varepsilon_{0}} = \frac{C \cdot t}{A \cdot \varepsilon_{0}}$                                                                      |
| Z plate                | /                   | $arepsilon_{_{33}}^{_{T}}$ / $arepsilon_{_{0}}$ |                                                                                                                                                                    |
| X plate                | thickness shear     | $d_{15}, s_{55}^{E}$                            | $k_{ij}^{2} = \frac{\pi}{2} \frac{f_{r}}{f_{a}} tan \frac{\pi}{2} \left( \frac{f_{a} - f_{r}}{f_{a}} \right)$                                                      |
|                        |                     |                                                 | $s_{ii}^{E} = \frac{1}{4\rho\left(tf_{a}\right)^{2}\left(l-k_{ij}^{2}\right)}$                                                                                     |
|                        |                     |                                                 | $d_{ij} = k_{ij} \sqrt{arepsilon^{I}_{ii} s^{E}_{jj}}$                                                                                                             |
| Z bar                  | longitudinal        | $d_{33}, s_{33}^E$                              | $k_{ii}^2 = \frac{\pi}{2} \frac{f_r}{f_a} tan \frac{\pi}{2} \left( \frac{f_a - f_r}{f_a} \right)$                                                                  |
|                        |                     |                                                 | $s_{ii}^{E} = \frac{1}{4\rho\left(lf_{a}\right)^{2}\left(l-k_{ii}^{2}\right)}$                                                                                     |
|                        |                     |                                                 | $d_{ii} = k_{ii} \sqrt{arepsilon_{ii}^T S_{jj}^E}$                                                                                                                 |
| YX plate<br>ZX plate   | length<br>extension | $d_{21}, s_{11}^{E}$                            | $\frac{k_{ij}^2}{1-k_{ij}^2} = \frac{\pi}{2} \frac{f_a}{f_r} \tan \frac{\pi}{2} \left( \frac{f_a - f_r}{f_a} \right)$                                              |
|                        |                     | $d_{31}, s_{11}^{E}$                            | $s_{ii}^{E} = \frac{1}{4\rho \left(lf_{r}\right)^{2}}$                                                                                                             |
| YZt/	heta<br>XYt/	heta |                     |                                                 | $d_{ij} = k_{ij} \sqrt{arepsilon_{ii}^T S_{jj}^E}$                                                                                                                 |
|                        |                     | $s_{13}^{E} \ s_{12}^{E}$                       | $s_{33}^{E'}(\theta) = s_{11}^{E} \sin^{4} \theta + s_{33}^{E} \cos^{4} \theta + (2s_{13}^{E} + s_{44}^{E}) \sin^{2} \theta \cos^{2} \theta$                       |
|                        |                     | $s_{14}^{E}$                                    | $s_{22}^{E'}(\theta) = s_{11}^E \cos^4 \theta + s_{33}^E \sin^4 \theta + (2s_{13}^E + s_{44}^E) \sin^2 \theta \cos^2 \theta - 2s_{14}^E \sin \theta \cos^3 \theta$ |
|                        |                     |                                                 | $s_{11}^{E'}(\theta) = s_{11}^E \cos^4 \theta + s_{11}^E \sin^4 \theta + \left(2s_{12}^E + s_{66}^E\right)\sin^2 \theta \cos^2 \theta$                             |

**Table S1** Crystal cuts, vibration modes, material constants and related equations for determination of the electro-elastic constants for NSLN and CLN crystals.

|                      | Bond                             | Bond distances (Å) | Bond angle (°) | $\Delta d$ (Å)              |
|----------------------|----------------------------------|--------------------|----------------|-----------------------------|
|                      | Nb <sub>1</sub> -O <sub>1</sub>  | 1.90022            | 165.0362       |                             |
|                      | $Nb_1-O_4$                       | 2.14370            |                |                             |
| Pristine phase       | $Nb_1-O_2$                       | 1.90022            | 165.0376       | 0.756                       |
| (Nb-O)               | $Nb_1-O_5$                       | 2.14370            |                |                             |
|                      | $Nb_1-O_3$                       | 1.90021            | 165.0349       |                             |
|                      | $Nb_1-O_6$                       | 2.14372            |                |                             |
|                      | $Li_1-O_1$                       | 2.23463            | 156.0552       |                             |
|                      | Li <sub>1</sub> -O <sub>4</sub>  | 2.03026            |                |                             |
| Pristine phase       | Li <sub>1</sub> -O <sub>2</sub>  | 2.23468            | 156.0533       | 0.671                       |
| (Li-O)               | $Li_1-O_5$                       | 2.03026            |                |                             |
|                      | Li <sub>1</sub> -O <sub>3</sub>  | 2.23461            | 156.0537       |                             |
|                      | Li <sub>1</sub> -O <sub>6</sub>  | 2.03025            |                |                             |
|                      | $Nb_1-O_1$                       | 1.91450            | 168.9592       |                             |
|                      | Nb <sub>1</sub> -O <sub>4</sub>  | 2.10781            |                |                             |
| $V_{Ii}^{-}$         | $Nb_1-O_2$                       | 1.91439            | 168.9622       | 0.591                       |
| $(Nh_1-O)$           | Nb <sub>1</sub> -O <sub>5</sub>  | 2.10751            |                |                             |
|                      | Nb <sub>1</sub> -O <sub>3</sub>  | 1.91426            | 169.0006       |                             |
|                      | $Nb_1 O_6$                       | 2.10761            |                |                             |
| (Nb <sub>2</sub> -O) | /                                | /                  | /              | 0.782                       |
| (Nb <sub>3</sub> -O) | /                                | /                  | /              | 0.713                       |
| (Nb <sub>4</sub> -O) | /                                | /                  | /              | 0.807                       |
| (Nb <sub>5</sub> -O) | /                                | /                  | /              | 0.711                       |
| (Nb <sub>6</sub> -O) | /                                | /                  | /              | 0.807                       |
| (Nb <sub>7</sub> -O) | /                                | /                  | /              | 0.712                       |
| (Nb <sub>8</sub> -O) | /                                | /                  | /              | 0.807                       |
|                      | /                                | /                  | /              | $\overline{\Delta d}$ =0.74 |
|                      | Nb <sub>Li</sub> -O <sub>1</sub> | 2.12294            | 157.1173       |                             |
|                      | $Nb_{Li}-O_4$                    | 1.92963            |                |                             |
| $Nb_{Li}^{4 +}$      | $Nb_{Li}-O_2$                    | 2.12206            | 157.1548       | 0.629                       |
| $(Nb_{Li}-O)$        | $Nb_{Li}-O_5$                    | 1.92955            |                |                             |
| L1                   | Nb <sub>Li</sub> -O <sub>3</sub> | 2.12309            | 157.1493       |                             |
|                      | $Nb_{Ii}-O_6$                    | 1.92955            |                |                             |

**Table S2** Distortion  $\Delta d$  of each octahedron contained in the pristine phase and the defect phase.

| C <sub>ij</sub> | <i>c</i> 11 | <i>c</i> <sub>12</sub> | <i>c</i> <sub>13</sub> | <i>C</i> 14 | C33                    | C44  | C66                    |
|-----------------|-------------|------------------------|------------------------|-------------|------------------------|------|------------------------|
| $V_{Li}^{-}$    | 216         | 74.6                   | 80.7                   | 8.5         | 239                    | 59.3 | 69.9                   |
| $Nb^{4 +}_{Li}$ | 223         | 78.1                   | 81.6                   | 5.5         | 238                    | 65.9 | 72                     |
|                 |             |                        |                        |             |                        |      |                        |
| e <sub>ij</sub> |             | <i>e</i> <sub>15</sub> | <i>e</i> <sub>22</sub> |             | <i>e</i> <sub>31</sub> |      | <i>e</i> <sub>33</sub> |
| $V_{Li}^{-}$    |             | 4.11                   | 2.12                   |             | 0.45                   |      | 1.13                   |
| $Nb_{Li}^{4+}$  |             | 3.31                   | 1.60                   |             | 0.58                   |      | 0.97                   |
|                 |             |                        |                        |             |                        |      |                        |

**Table S3** Elastic constants  $(c_{ij})$  and piezoelectric stress constants  $(e_{ij})$  of  $V_{Li}^-$  and  $Nb_{Li}^{4+}$  calculation models.

**Table S4** Concentration of  $V_{Li}^{-}$  and  $Nb_{Li}^{4+}$  for LN crystal with different [Li]/[Nb] ratios.

| Concentration                      | NSLN<br>(49.83:50.17) | <i>V</i> <sub><i>Li</i></sub><br>(48.94:51.06) | CLN<br>(48.65:51.35) | $Nb_{Li}^{4+}$<br>(47.92:52.08) |
|------------------------------------|-----------------------|------------------------------------------------|----------------------|---------------------------------|
| $V_{Li}^{-}$ (%)                   | 0.272                 | 1.696                                          | 2.160                | 3.328                           |
| Nb <sup>4+</sup> <sub>Li</sub> (%) | 0.068                 | 0.424                                          | 0.540                | 0.832                           |

**Table S5** Bond distances and bond angles for NSLN and CLN crystals. Variations of the distortion  $\Delta d$  of NbO<sub>6</sub> and LiO<sub>6</sub> octahedron for NSLN and CLN crystals.

|                   |           | NSL             | N       |                |                      |
|-------------------|-----------|-----------------|---------|----------------|----------------------|
| Bond dist         | ances (Å) | Bond angles (°) |         | $\Delta d$ (Å) | Total $\Delta d$ (Å) |
| Nb-O <sub>1</sub> | 2.1354    | 10Nb-0.         | 165 500 | 0 2812         |                      |
| Nb-O <sub>4</sub> | 1.8631    | $20_1$ ND $0_4$ | 103.388 | 0.2812         |                      |
| Nb-O <sub>2</sub> | 1.8629    | 10 - Nh - 0     | 165 502 | 0.2815         | 0.9449               |
| Nb-O <sub>5</sub> | 2.1356    | 202 10 05       | 105.595 | 0.2813         | 0.0440               |
| Nb-O <sub>3</sub> | 2.1358    | 10 - Nb - 0     | 165 604 | 0 2821         |                      |
| Nb-O <sub>6</sub> | 1.8626    | 203 100 06      | 103.004 | 0.2821         |                      |

|                   |           | NSI                     | LN      |                |                      |
|-------------------|-----------|-------------------------|---------|----------------|----------------------|
| Bond dist         | ances (Å) | Bond angl               | es (°)  | $\Delta d$ (Å) | Total $\Delta d$ (Å) |
| Li-O <sub>1</sub> | 2.2566    | $\sqrt{0}$ -Li-0.       | 152 616 | 0 2272         |                      |
| Li-O <sub>4</sub> | 2.0531    | 201 $m$ $04$            | 155.010 | 0.2272         | 0.6800               |
| Li-O <sub>2</sub> | 2.0534    | $\angle 0_2 - Li - O_5$ | 153.604 | 0.2266         | _                    |

| Li-O <sub>5</sub> | 2.2564 |                       |         |        |
|-------------------|--------|-----------------------|---------|--------|
| Li-O <sub>3</sub> | 2.2562 | $\sqrt{0}$ $-Li$ $-0$ | 152 602 | 0.0062 |
| Li-O <sub>6</sub> | 2.0536 | 203 20 06             | 155.002 | 0.0002 |

|                   |           | CL              | N       |                |                      |
|-------------------|-----------|-----------------|---------|----------------|----------------------|
| Bond dist         | ances (Å) | Bond angles (°) |         | $\Delta d$ (Å) | Total $\Delta d$ (Å) |
| Nb-O <sub>1</sub> | 2.1277    | 10Nb-0.         | 165 691 | 0.2628         |                      |
| Nb-O <sub>4</sub> | 1.8731    | $20_1$ m $0_4$  | 105.081 | 0.2028         |                      |
| Nb-O <sub>2</sub> | 1.8731    | 10 - Nh - 0     | 165 691 | 0 2628         | 0 7994               |
| Nb-O <sub>5</sub> | 2.1277    | 202 110 05      | 105.081 | 0.2028         | 0.7004               |
| Nb-O <sub>3</sub> | 2.1277    | 10 - Nb - 0     | 165 691 | 0.2628         |                      |
| Nb-O <sub>6</sub> | 1.8731    | 203 10 06       | 103.081 | 0.2028         |                      |

|                   |            | CL                    | N       |                |                      |
|-------------------|------------|-----------------------|---------|----------------|----------------------|
| Bond dist         | tances (Å) | Bond angles (°)       |         | $\Delta d$ (Å) | Total $\Delta d$ (Å) |
| Li-O <sub>1</sub> | 2.2696     | $\sqrt{0}$ -Li-0.     | 152 464 | 0.2470         |                      |
| Li-O <sub>4</sub> | 2.0497     | $20_1 m 0_4$          | 132.404 | 0.2479         |                      |
| Li-O <sub>2</sub> | 2.0497     | $\sqrt{0}$ $-1i$ $-0$ | 152 464 | 0.2470         | 0 7437               |
| Li-O <sub>5</sub> | 2.2696     | 202 11 05             | 132.404 | 0.2479         | 0.7437               |
| Li-O <sub>3</sub> | 2.2696     | $\sqrt{0}$ $-Li$ $-0$ | 152 464 | 0.2470         |                      |
| Li-O <sub>6</sub> | 2.0497     | 203 20 06             | 132.404 | 0.2479         |                      |

## Table S6 Cell parameters for NSLN and CLN crystals.

|                                    | NSLN                                      | CLN                                       |
|------------------------------------|-------------------------------------------|-------------------------------------------|
| Crystal system                     | Trigonal                                  | Trigonal                                  |
| Space group                        | 3m                                        | 3m                                        |
| Unit cell dimension (Å)            | <i>a</i> =5.1380(6), <i>c</i> =13.8300(2) | <i>a</i> =5.1417(6), <i>c</i> =13.8520(2) |
| c/a                                | 2.6917                                    | 2.6941                                    |
| Unit cell volume (Å <sup>3</sup> ) | 316.18                                    | 317.14                                    |

Table S7 Atomic coordinates for NSLN and CLN crystals.

|        | NS      | LN      |         |
|--------|---------|---------|---------|
| Atom   | Х       | у       | Z       |
| $Nb_1$ | 0.66667 | 0.33333 | 0.46880 |
| $O_1$  | 0.99192 | 0.37193 | 0.36503 |
| $O_2$  | 0.96140 | 0.67467 | 0.53165 |
| $O_3$  | 0.62803 | 0.62004 | 0.36503 |

| $O_4$ | 0.32529 | 0.28667 | 0.53165 |
|-------|---------|---------|---------|
| $O_5$ | 0.37992 | 0.00804 | 0.36503 |
| $O_6$ | 0.71329 | 0.03856 | 0.53165 |

| NSLN           |          |         |         |  |  |  |
|----------------|----------|---------|---------|--|--|--|
| Atom           | Х        | У       | Z       |  |  |  |
| $Li_1$         | 0.33333  | 0.66667 | 0.58200 |  |  |  |
| $O_1$          | 0.65864  | 0.70527 | 0.69838 |  |  |  |
| $O_2$          | 0.71333  | 1.03859 | 0.53169 |  |  |  |
| O <sub>3</sub> | 0.29475  | 0.95338 | 0.69838 |  |  |  |
| $O_4$          | -0.03856 | 0.67469 | 0.53169 |  |  |  |
| $O_5$          | 0.04664  | 0.34138 | 0.69838 |  |  |  |
| $O_6$          | 0.32533  | 0.28669 | 0.53169 |  |  |  |

| CLN    |         |          |         |  |  |  |
|--------|---------|----------|---------|--|--|--|
| Atom   | Х       | у        | Z       |  |  |  |
| $Nb_1$ | 0.66667 | 0.33333  | 0.53210 |  |  |  |
| $O_1$  | 0.95213 | 0.29514  | 0.63539 |  |  |  |
| $O_2$  | 1.00969 | 0.62846  | 0.46870 |  |  |  |
| $O_3$  | 0.70482 | 0.65696  | 0.63539 |  |  |  |
| $O_4$  | 0.37151 | 0.38120  | 0.46870 |  |  |  |
| $O_5$  | 0.34300 | 0.04783  | 0.63539 |  |  |  |
| $O_6$  | 0.61876 | -0.00973 | 0.46870 |  |  |  |

| CLN             |          |          |         |  |  |  |
|-----------------|----------|----------|---------|--|--|--|
| Atom            | Х        | у        | Z       |  |  |  |
| Li <sub>1</sub> | 0        | 0        | 0.42000 |  |  |  |
| $O_1$           | 0.28547  | -0.03813 | 0.30204 |  |  |  |
| O <sub>2</sub>  | 0.37153  | 0.38125  | 0.46866 |  |  |  |
| O <sub>3</sub>  | 0.03815  | 0.32363  | 0.30204 |  |  |  |
| $O_4$           | -0.38122 | -0.00968 | 0.46866 |  |  |  |
| $O_5$           | -0.32360 | -0.28544 | 0.30204 |  |  |  |
| $O_6$           | 0.00971  | -0.37150 | 0.46866 |  |  |  |