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Figure S1 (a)The optimization of the addition amount of HP-β-CD from fluorescent spectrum 
of SQDs at different concentrations of HP-β-CD. (1.0 g, 1.5 g, 2.0 g, 2.5g, 3.0 g) (b) The 
optimization of reaction time at 24, 36, 48, 72 and 96 hours. 

Figure S2 The XRD of HP-SQD.

Figure S3 The Raman spectra of HP-SQD.
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Figure S4 (a) The emission intensity ratio F/F0 of HP-SQDs at various pH from 3 to11; (b) The 
effect of NaCl concentration on the intensity ratio F/F0 in the range from 0.10 to 1.0 M; (c) The 
effect of temperature change on the intensity ratio F/F0 from 25 to 60℃; (d) The effect of 
Storage time at 4C during seven days after the preparation of HP-SQDs.
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Figure S5 The comparison of emission quenching upon the formation of binding complexes of 
HP-SQDs with different nitrophenol isomers.
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Figure S6 The photo of (a) HP-SQD, (b)SQD + p-NP, (c)SQD + m-NP, (d) SQD + o-NP. 
(under 365 nm)

Table S1 Compare with other sensors.

Materials Analytical 

methods

NPs Ranges LODs Sensing 

Mechanism

References

Graphene Electrochemical p-NP 0.5–1250 μM 0.012 μM [1]

CDs@PDA Fluorescence p-NP 2.0-34 μM 3.4 μM IFE [2]

N-CDs Fluorescence p-NP 1.0-250 μM 0.40 μM IFE and 

Static 

Quenching 

[3]

MIP@CQDs Fluorescence p-NP 0-114 μM 0.41 μM IFE and 

Dynamic 

Quenching 

[4]

perovskite QD Fluorescence p-NP 0-96 μM 0.16 μM FRET [5]

Tb-MOF Fluorescence p-NP 3.3-46.2 μM 0.415 μM IFE [6]

GF/Fe3O4 Colorimetric p-NP 0.1-1000 μM 0.045 μM [7]

MWCNTs Electrochemical p-NP 1-200 μM 0.41 μM [8]

Nickel-based Electrochemical p-NP 0.01-20 nM 7.18 pM [9]

HP-SQDs Fluorescence p-NP 2.5-45 μM 0.25 μM Structural 

Matching 

and PET 

This Work
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Figure S7 The fluorescence quenching ratio (F/F0) of the sensor within 7 d.

Figure S8 (a) Cyclic voltammogram of the HP-SQDs in 0.1 M K2S2O8/PBS solution at 50 
mV/s. (b) Optical bandgap of the HP-SQDs obtained from the UV-vis absorption spectrum.

Figure S9 The EHOMO and ELUMO of HP-SQDs and p-NP.
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Figure S10 UV-Vis spectral changes (a) o-NP, (b) m-NP, and (c) p-NP at different 
concentration (0-90 μmol/L) of HP-β-CD. The concentration of nitrophenol is fixed at 40 
μmol/L.

Figure S11 Absorbance changes of (a) o-NP, (c) m-NP, and (e) p-NP with the addition of 
various concentration of HP-β-CD. The double-reciprocal plot of ΔA-1 versus and [HP-β-
CD]-1 for o-NP/ HP-β-CD (b), m-NP/HP-β-CD (d), and p-NP/HP-β-CD (f) system.
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Figure S12 Geometrical structures of (a) o-NP, (b) m-NP, (c) p-NP and (d)2-hydroxylpropyl-
β-cyclodextrin molecules optimized at the M062X/6-31G(d) level of theory.

Figure S13 The (a) UV-Vis and (b) fluorescent spectra of mixture(same reaction conditions, 
no sulphur source added).

Table S2 Complexation energies and free enthalpies of inclusion complexes. All values are in 
kcal/mol.

o-NP m-NP p-NP

∆𝐸 -21.54 -22.15 -24.94

-BSSE corrected∆𝐸 -11.92 -12.44 -14.63

∆𝐺 -5.64 -5.53 -6.45

Table S3 Recoveries of nitrophenol isomers for the industrial wastewater (as compared with 
GC-MS).

Detection Samples
Spiked 

(µmol/L)

Found 

(µmol/L)

Recovery

(%)

RSD 

(%)

(n=6)

GC-MS

(µmol/L)

0 0 - - 0

40 39.20 98.10 2.04 40.63o-NP

Industrial

Wastewate

r 60 59.03 98.38 1.04 60.38
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80 78.62 98.28 1.36 80.26

0 0 - - 0

40 41.11 102.8 1.43 41.35

60 61.15 102.0 0.61 61.50
m-NP

Industrial

Wastewate

r
80 80.18 100.2 1.89 80.73

0 2.32 0.21 2.57

40 43.98 103.9 0.56 43.16

60 63.96 102.6 0.80 63.67
p-NP

Industrial

Wastewate

r
80 83.71 101.7 1.31 83.93

Table S4 Recoveries of nitrophenol isomers for the lake water.

Detection Samples
Spiked 

(µmol/L)

Found 

(µmol/L)

Recovery 

(%)

RSD (%) 

(n=6)

20 19.68 98.38 3.2

o-NP Lake water 75 74.60 99.47 3.7

125 127.85 102.28 1.7

25 24.57 98.29 4.2

m-NP Lake water 75 74.71 99.61 2.5

125 128.44 102.76 2.9

10 10.09 100.91 2.3

p-NP Lake water 20 19.97 99.83 4.3

35 34.44 98.40 2.7

Table S5 Recoveries of nitrophenol isomers for the spiked tap water.

Detection Samples
Spiked 

(µmol/L)

Found 

(µmol/L)

Recovery 

(%)

RSD (%) 

(n=6)

20 20.42 102.10 3.2

75 75.53 100.7 3.0o-NP
Tap 

water
125 124.6 99.72 3.1

25 25.47 101.9 3.6
m-NP

Tap 

water 75 74.22 98.96 2.1
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125 124.6 99.66 3.3

10 9.57 95.67 2.2

20 19.21 96.05 1.1p-NP
Tap 

water
35 35.45 101.3 2.1

Table S6 Recovery of nitrophenol isomers from industrial wastewater (in the lab from the 
school of chemistry).

Detection Samples
Spiked 

(µmol/L)

Found 

(µmol/L)

  

Recovery 

(%)

  RSD 

(%) (n=6)

0 0 - -

40 38.67 96.68 3.18

60 61.40 102.3 2.63

o-NP

(Chem lab)

Industrial

Wastewate

r
80 83.18 104.0 0.94

0 - - -

40 38.30 95.75 2.64

60 57.84 96.40 1.01

m-NP

(Chem lab)

Industrial

Wastewate

r
80 81.50 101.9 3.84

0 1.97 - 1.29

40 40.64 101.6 1.14

60 62.05 103.4 0.94

p-NP

(Chem lab)

Industrial

Wastewate

r
80 81.51 101.9 2.40

Quantum yield:
The relative quantum yield was determined according to the equation: 

 
𝜙𝑢𝑛 = 𝜙𝑠𝑡𝑑 ∙  

𝐹𝑢𝑛

𝐹𝑠𝑡𝑑
∙

𝐴𝑠𝑡𝑑

𝐴𝑢𝑛
∙ (𝜂𝑢𝑛

𝜂𝑠𝑡𝑑
)2

Where std represents the reference of quine sulfate, and un represents the sample. F is the 

integral photon fluxes emitted from the sample (or the quantum yield standard) from the 

spectrally corrected spectra. A is the absorbance at the excitation wavelength, and  is the 𝜂

refractive index of solvent. Quinine sulfate solution (dissolved at 0.10 M H2SO4) was used as 

the standard (  = 0.54, η = 1.33). To minimize re-absorption effects, absorbances in the 10 𝜙𝑠𝑡𝑑
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mm fluorescence cuvette were kept less than 0.1 at the excitation wavelength. The quantum 

yield of SQDs is calculated as 0.030 from the above equation.
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