Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Controlled Growth of 3D Topological Insulator BiSb(Te_{1-y}Se_y)₃ Nanocrystals by Chemical Vapor Transport

Nour Abdelrahman ^{abcd*}, Titouan Charvin^a, Samuel Froeschke^a, Romain Giraud^{ae}, Joseph Dufouleur^a, Alexey Popov^a, Sandra Schiemenz^a, Daniel Wolf^a, Bernd Büchner^{af}, Michael Mertig^{bg}, and Silke Hampel^{a*}

^aLeibniz Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany. E-mail: n.abdelrahman@ifw-dresden.de; Tel: +4935146591116.

^bInstitute of Physical Chemistry, Technische Universität Dresden, 01062 Dresden, Germany

^cDepartment of Chemistry, Faculty of Applied Sciences, Palestine Technical University-Kadoorie, Jaffa Street, Tulkarm, P.O. Box 7, Palestine.

^d Helmholtz-Zentrum Dresden-Rossendorf e.V. D-01328 Dresden, Germany.

^eUniversité Grenoble Alpes, CNRS, CEA, Grenoble-INP, Spintec, 38054 Grenoble, France

^fInstitute of Solid State and Materials Physics, Technische Universität Dresden, Dresden, 01062, Germany

^gKurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., Kurt-Schwabe-Straße 4, Waldheim 04736, Germany

*Contact E-mail: n.abdelrahman@ifw-dresden.de. (Nour Abdelrahman)

Formula	State	Т	H(T) inJ·mol ⁻¹	S(T) inJ·mol ^{−1} ·K ^{−1}	a	b	c	d	e
Bi	S	298	0	56.735	11.849	3.05E-02	4.105E+05		
Bi (l)	L	544	9271.870	71.997	19.016	1.04E-02	2.07E+06	-3.979E-06	
Bi ₂ Te	S	298	-27614.4	175.728	80.7512				
BiTe	S	298	-27196	110.876	53.9736				
BiSe	S	298	-53136.8	102.508	53.5552				
Bi ₂ O ₃	S	298	-578010	149.81	96.780	0.04633747	249291.3	-6.626E-09	
Bi ₂ O ₃ (beta)	S	1003	-563676.81	149.257021	149.7				
$Bi_2O_3(l)$	L	1098	-590808.97	94.464161	202				
Sb	S	298	0	45.522	30.472	-0.015384568	-199995.2	1.794E-05	
Sb (l)	L	904	17530.47	62.707929	31.38	0.06611			
Sb ₂ O ₃	S	298	-720305	110.449	134.7		-802800		-419.2
Sb ₂ O ₃ (beta)	S	298	-703623.52	134.62452	92.05	0.06611			
$Sb_2O_3(l)$	L	298	-662675.9	172.405918	156.9	0.1454735	2454752.8		
Sb ₂ O ₄	S	298	-907509.6	127.1936	47.019792		-2182000		151.4
Sb ₂ O ₅	S	298	-971901	125.102	133.4	0.034088			
SbO ₂	S	298	-453754.8	63.597	47.279	0.022676		-0.000012865	
Se	S	298	0	42.2584	11.7535	0.047225	85927.9		
Se (l)	L	210	3661.58	48.349019	134.7248				
Se ₂ O ₅	S	298	-413379.15	158.992	110.7				-726
SeO ₂	S	298	-225350	66.693	76.5672	0.07223			
SeO ₃	S	298	-170288.79	96.232	35.6687	-0.031668718	-310029	3.14425E-05	
Te	S	298	0	49.221	126.031802	-0.44388672	-1655855.3	0.000565245	
Te(l)	L	298	10925.22	62.246118	12.75016	0.26083056	1748912		
H ₂ TeO ₄	S	298	-715000	99.759999	65.18672	0.01456032	-502080		
TeO ₂	S	298	-323423	74.057	65.1872	0.01456032	-502080		
TeO ₂ (l)	L	298	-298181.04	98.930644	167.36				
Bi ₂ Te ₃ (l)	L	870	24661.72	364.409986	112.88432	0.0531368			
Sb ₂ Te ₃ (l)	L	298	34506.38	347.269875	188.28				
Bi ₂ Se ₃ (l)	L	995	-102830.14	237.782448	118.74192	0.02092			
Sb ₂ Se ₃ (l)	L	298	-78770.27	266.642811	118.74192	0.02092			
Sb ₂ Se ₃	S	298	-127612	212.129	86.818	0.0489528			
Bi ₂ Se ₃	S	298	-139954.8	239.7432	112.88432	0.0531368			
Sb ₂ Te ₃	S	298	-56484	246.438	107.989	0.055229			
Bi ₂ Te ₃	S	298	-78659	261.082					

SI. 1. Thermodynamic data for the condensed species used in the simulation

*Cp function d

The units of th

SI. 2. Thermodynamic data for the gaseous species used in the simulations

Formula	Т	H(T) inJ∙mol ⁻¹	S(T) inJ·mol ⁻¹ ·K ⁻¹	a	b	c	d	e	f	g
Ar	298.0	0.0	154.845	2.079E+01						
Н	298.0	217999.0	114.716	2.079E+01						
H ₂	298.0	0.000	130.680	1.983E+01	3.078E-03	-2.952E+05	1.430E-06	1.949E+02		
H ₂ O	298.0	-241834.0	188.834	2.578E+01	1.495E-02	-2.800E+04	-5.524E-07		1.107E+03	
0	298.0	249173	161.058	1.996E+01	2.639E-04	5.865E+04	-3.695E-08	2.095E+01		
O ₂	298.0	0	205.147	2.692E+01	1.698E-02	2.293E+05	-6.766E-06	-7.916E+01		
Bi	298	210873.6	187.009	2.079E+01						
Bi ₂	298.0	220078.4	273.743	3.679E+01	7.615E-04					
BiSe	298	166523.2	269.559044	3.670E+01	7.950E-04					
BiTe	298.0	190372.0	273.006	3.688E+01	9.120E-04					
BiO	298.0	113595.6	246.547	3.611E+01	8.368E-04	-3.305E+05				
Sb	298.0	264554.320	180.264	2.079E+01						
Sb ₂	500.0	235879.23	254.648	3.724E+01						
Sb ₄	500.0	208775.96	353.228	8.264E+01						
SbSe	298	212129	255.877364	3.635E+01	1.172E-03					
SbTe	298.0	202087.2	262.488	3.630E+01	1.239E-03	3.820E+03	-1.948E-08			
SbOH	298	-133523.5	133.812444	9.018E+01						
Sb(OH) ₂	298	-493667.4	156.091444	134.8493						
Sb ₄ O ₆	500.0	-125565.39	429.455	2.234E+02						
SbH ₃	298.0	145101	233.075	5.050E+01	1.870E+00	-1.318E+06				
SbO	298.0	89297	238.346	5.463E+01	-5.428E-03			-3.655E+02		
Se	298	235350	176.715	21.464	0.001506	-92000				
Se ₂	298	136699	243.618	44.601	-0.002657	-251000				
Se ₃	298	173518	315.038	58.145	0.003038	-222000				
Se ₄	298	180631	379.204	83.082	0.000033	-251000				

SI. 2. Thermodynamic data for the gaseous species used in the simulations – continued

Formula	Т	H(T) inJ∙mol ⁻¹	S(T) inJ·mol ⁻¹ ·K ⁻¹	a	b	c	d	e	f	g
Se ₅	298	135444	385.359	107.926	0.000088	-590000				
Se ₆	298	132515	433.613	132.905	0.000067	-594000				
Se ₇	298	141302	486.474	157.762	0.000113	-828200				
Se ₈	298	152176	531.159	182.74	0.000092	-494000				
SeO	298	62341	233.994	3.494E+01	1.506E-03	-3.680E+05				
SeO ₂	298	-107842	264.998	5.284E+01	3.088E-03	-9.200E+05				
H ₂ Se	298	29288	218.933	3.176E+01	1.464E-02	-1.297E+05				
SeO ₂	298	-107842	264.998	5.284E+01	3.088E-03					
H ₂ Se	298	29288	218.933	3.176E+01	1.464E-02					
TeSe	298	151464	256.882177	3.348E+01	3.743E-02	-3.451E+05	-4.053E-05			1.305E-08
Те	298	209451	182.707	2.079E+01						
Te ₂	298.0	162063	258.944	3.570E+01	-1.507E-03	1.635E-05				
Te ₃	298.0	203223.04	335.942	5.802E+01	4.022E-04	-1.428E+05	-3.159E-07			8.504E-11
Te ₄	298.0	217321.89	379.093	8.282E+01	7.007E-04	-2.418E+05	-5.506E-07			1.483E-10
Te ₅	298.0	220026.76	462.011	1.079E+02	3.929E-04	-2.155E+05	-3.096E-07			8.367E-11
Te ₆	298.0	226560.81	491.477	1.329E+02	3.529E-04	-2.504E+05	-2.798E-07			7.592E-11
Te ₇	298.0	254235.86	558.072	1.578E+02	4.434E-04	-3.050E+05	-3.503E-07			9.496E-11
Te ₂ O ₂	298.0	-108784	327.298	8.211E+01	5.577E-03	-1.180E+06				
TeO	298	744750	240.689	3.531E+01	1.339E-03	-3.47E+05				
TeO ₂	298	-59413	274.998244	5.477E+01	2.414E-03	-1.183E+06	-5.336E-06			
Te (OH) ₂	298	-374860	228.114	6.587E+01	4.215E-02	-6.585E+04	-2.668E-06	1.157E+02		
ТеОН	298	-102890	187.869	4.250E+01	3.212E-02	-3.293E+04		5.785E+01		
H ₂ Te	298.0	99579	228.974	3.548E+01	1.205E-02	-3.096E+05				
H ₂ TeO ₃	298.0	430000	322.586	7.933E+01	5.064E-02	4.881E+04	-8.719E-06	7.612E+01		

SI. 3. EDX spectrum (15 kV) of bulk BiSb $(Te_{0.98}Se_{0.02})_3$ used as starting material for nanocrystals synthesis.

SI. 4. pXRD patterns of bulk BiSb($Te_{1-y}Se_y$)₃ (y = 0, 0.01, 0.02, ..., 0.09) and the reference pattern of BiSbTe₃, on the right side, main peak enlargement patterns (to show the corresponding peak shift).

Title	Substrate	$T_l / ^{\circ} \mathbf{C}$	$T_2/$ °C	$\Delta T/$	D/	<i>t /</i> h
				Κ	cm	
S 1	SiO_2	500	420	80	12	8
S2	SiO_2	500	330	170	12	8
S3	SiO_2	500	330	170	12	4
S4	SiO_2	560	390	170	12	4
S5	SiO_2	630	460	170	12	4
S 6	SiO_2	500	380	120	8	12
S 7	SiO_2	500	380	120	16	12
S 8	SiO_2	560	390	170	12	4
S9	SiO_2	560	390	170	12	8
S10	SiO_2	560	390	170	12	12
S11	SiO_2	560	390	170	12	16
S12	Al_2O_3	500	420	80	12	4
S13	Si	500	380	120	12	8
S14	BaF_2	500	420	80	12	4

SI. 5. Summary of the growth conditions for different samples of $BiSb(Te_{1-y}Se_y)_3$ nanocrystals.

 T_1 indicates the temperature of source zone. T_2 indicates temperature of sink zone (substrate). ΔT is the temperature gradient. *D* is the distance between source and sink zones. *t* is the growth duration.

SI. 6. SEM images of BiSb($Te_{1-y}Se_y$)₃ flakes show thickness – dependence of the temperature gradient. the temperature gradient. S1 and S2 were grown at $T_1 = 500$ °C, $T_2 = 420$ °C, $\Delta T = 80$ and $T_1 = 500$ °C, $T_2 = 330$ °C, $\Delta T = 170$ respectively.

SI. 7. Optical microscope image of large size BiSb(Te_{1-y}Se_y)₃ nanocrystals prepared at $T_1 = 630$ °C, $T_2 = 460$ °C.

SI. 8. SEM image of BiSb(Te_{1-y}Se_y)₃ nanowire prepared at short growth duration t = 4 h.

SI. 9. Optical microscope images of BiSb($Te_{1-y}Se_y$)₃ nanocrystals show different growth direction on different substrate materials.

SI. 10. EDX spectrum (15 kV) of BiSb(Te_{0.99}Se_{0.01})₃ crystal.

SI. 11. AFM image of a thin BiSb($Te_{1-y}Se_y$) nanocrystal demonstrating the planer hexagonal morphology.