A high-performance organic-inorganic self-powered broadband

photodetector based on PANI/Bi₂O₂S nanocomposites

Bingwei Li^{a,1}, Kai Wang^{b,1}, Nanyin Zhao^a, Zhentao Fu^a, Mingtao Wang^a,

Zhuoqiao Xie^a, Jun Li^{a*}

a. Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices

and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, P R

China

b. Key Laboratory of MEMS of the Ministry of Education Southeast University Nanjing 210096, China

¹ These authors contributed equally to this work.

^{*} Corresponding author. E-mail addresses: lijun@xtu.edu.cn

Theoretical calculation

In this paper, the Density Functional Theory (DFT) calculations were performed by the Vienna Ab-initio Simulation Package (VASP).^{1, 2} Also, The Bi₂O₂S was optimized with a less than 0.01 eV atom-1 residual force on per atom. For the exchange-correlation potentials, we adopted Perdew-Burke-Ernzerhof (PBE) within the Generalized Gradient Approximation (GGA).³ The energy cutoff was 500 eV, and the Brillouin zone integration was performed using a k-point grid of ($16 \times 16 \times 16$). After optimization, the lattice constants of Bi₂O₂S are 3.85 Å along the x and y directions and 12.06 Å along the z direction. The Bi-O and Bi-Bi bond lengths are 2.319 Å and 3.444 Å, respectively.

Table S1Responsivity in different wavelength

Wavelength	Power	Photocurrent	Responsivity	
Concentration	Density	Density		
350nm	$100 \ \mu W/cm^2$	2.95 μA/cm ²	29.5 mA/W	
365nm	$150 \ \mu W/cm^2$	1.72 μA/cm ²	11.5mA/W	
546nm	$100 \ \mu W/cm^2$	1.15 μA /cm ²	11.5mA/W	
630nm	$150 \ \mu W/cm^2$	1.00 μA/cm ²	6.0mA/W	
660nm	$170 \ \mu W/cm^2$	0.78 μA/cm ²	4.6mA/W	
700nm	$110 \ \mu W/cm^2$	0.58 μA/cm ²	5.3mA/W	
760nm	$90 \ \mu W/cm^2$	$0.15 \mu A \ /cm^2$	1.7mA/W	

Calculated by formula:

R=Ip / PS

(Where R is the photoresponsivity, Ip is the photocurrent, P and S is the Power density and Irradiation area, respectively)

Material	Electrolyte	Desmanaivity	Photoresponse	Potential	Ref.
	Concentration	Responsivity	Time (s)	(V)	
This work	0.5M, KOH	29.5 mA/W	0.1	0	
Bi QDs	0.1M KOH	8.64 μA/W	0.2	0.6	4
$SnSe_2/WSe_2$	0.5M KOH	1.03 mA/W	0.05	0.6	5
InSe NSs	0.3M KOH	10.14 mA/W	0.002	0	6
Ga ₂ O ₃	$0.5M \text{ Na}_2 \text{SO}_4$	3.81 mA/W	0.5	0	7
GeH NSs	$0.5M \text{ Na}_2 \text{SO}_4$	24 µA/W	0.24	0	8
Sb NSs	0.5M KOH	1.5µA/W	1	0.6	9
GeSe NSs	$0.5M H_2SO_4$	0.16µA/W	0.855	-0.3	10

Table S2Performance comparison

The charge transfer mechanism can be explained by the following equation:

$$h^+ + OH^- \to OH \cdot \tag{1}$$

$$e^- + OH^- \rightarrow OH^-$$
 (2)

Figure S1 Theoretical prediction of the band structure of Bi_2O_2S .

Figure S2 I-V spectra of the composite structure.

Figure S3 Performance comparison between different semiconductor materials.

Figure S1 Theoretical prediction of the band structure of Bi_2O_2S .

Figure S2 Linear Sweep Voltammetry (LSV) characteristic curves of $PANI/Bi_2O_2S$ under dark and light conditions.

Figure S3 Performance comparison between different semiconductor materials.

References

- S1. K. K. Korir, G. O. Amolo, N. W. Makau and D. P. Joubert, *Diamond and Related Materials*, 2011, **20**, 157-164.
- S2. G. Kresse and J. Furthmüller, *Physical Review B*, 1996, **54**, 11169.
- S3. J. P. Perdew, K. Burke and M. Ernzerhof, *Physical Review Letters*, 1996, 77, 3865-3868.
- S4. c. xing, W. Huang, Z. Xie, J. Zhao, D. Ma, T. Fan, W. Liang, Y. Ge, B. Dong and J. Li, ACS Photonics, 2018, 5. 621-629.
- P. Chauhan, A. B. Patel, G. K. Solanki, H. K. Machhi, C. K. Sumesh, S. S. Soni, V. Patel and V. M. Pathak, *The Journal of Physical Chemistry C*, 2021, 125, 14729-14740.
- S6. X. Yang, X. Liu, L. Qu, F. Gao, Y. Xu, M. Cui, H. Yu, Y. Wang, P. Hu and W. Feng, ACS Nano, 2022, 16, 8440-8448.
- S7. K. Chen, S. Wang, C. He, H. Zhu, H. Zhao, D. Guo, Z. Chen, J. Shen, P. Li, A. Liu, C. Li, F. Wu and W. Tang, ACS Applied Nano Materials, 2019, 2, 6169-6177.
- S8. N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, S. X. Dou and Y. Du, *Small*, 2020, 16, 2000283.
- S9. L. Su, X. Tang, X. Fan, D. Ma, W. Liang, Y. Li and H. Zhang, Advanced Functional Materials, 2019, 29, 1905857.
- S10. M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nuñez, B. Martín-García, D. Bouša, D. Sedmidubský, V. Pellegrini, Z. Sofer, A. Cupolillo and F. Bonaccorso, *Advanced Functional Materials*, 2020, 30, 1909572.