SUPPORTING INFORMATION

Non-thermal Magnetic Deicing Using Two-Dimensional Chromium Telluride

Chinmayee Chowde Gowda¹, Alexey Kartsev^{2,3,4*}, Nishant Tiwari⁵, Safronov A.A³, Prafull

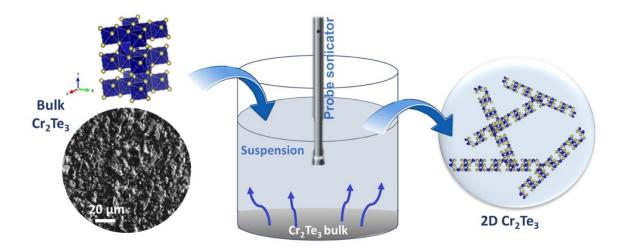
Pandey⁶, Ajit K. Roy⁷, Pulickel M. Ajayan⁸, Douglas S. Galvão^{9*} and Chandra Sekhar Tiwary^{1,5}

¹School of Nano Science and Technology, Indian Institute of Technology Kharagpur, West Bengal – 721302, India

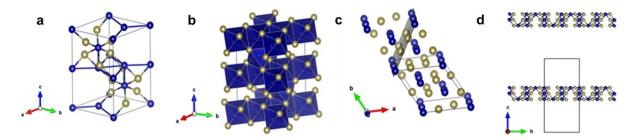
²Computing Center of the Far Eastern Branch of the Russian Academy of Sciences, 680000 Khabarovsk, Russia

³MIREA-Russian Technological University, 119454 Moscow, Russia

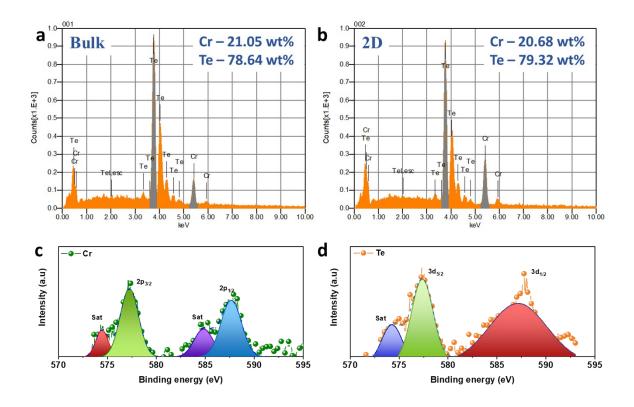
⁴Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russia

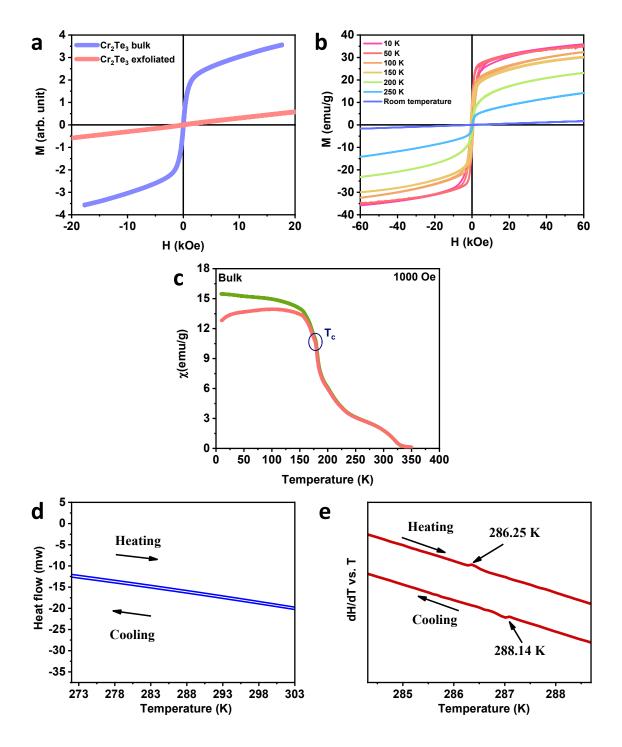

⁵Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal – 721302, India

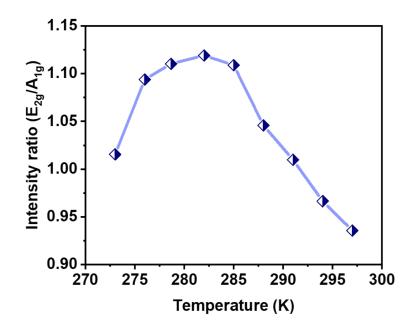
⁶Materials Engineering, Indian Institute of Technology Gandhinagar, Gujurat - 382055, India

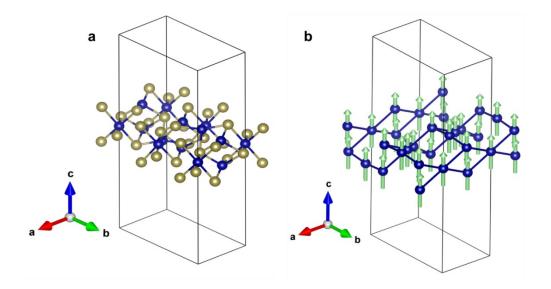

⁷Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio, 45433-7718, USA

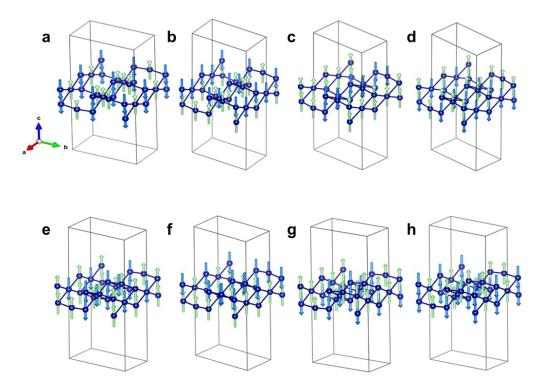
⁸Department of Materials Science and NanoEngineering, Rice University, 6100 S Main Street, Houston, TX 77005, USA


⁹ Applied Physics Department and Computational Engineering and Sciences, State University of Campinas, Campinas, SP, 13083-970, Brazil


Figure S1: Schematic representation of the liquid phase exfoliation technique (inset down: SEM image of bulk Cr_2Te_3 crushed sample).


Figure S2: Volumetric view of the original structure, (a) Cr atoms are shown in blue, Te atoms in yellow, (b) volumetric view of the original structure in the polyhedron model, (c) plane $(11\overline{0})$ in the original structure and (d) initial 2D structure.


Figure S3: Elemental analysis of (a) bulk sample after homogenization, and (b) $2D Cr_2Te_3$, (c) *XPS survey spectra of Cr*₂Te₃ (c) *Chromium and (d) Tellurium.*


Figure S4: Magnetic behavioural studies (a) *M*-H loop of bulk and 2D Cr_2Te_3 at room temperature, (b) *M*-H loop at temperatures ranging from 10 K to 300 K (50 K intervals) and (c) FC-ZFC curves depicting T_C at 180 K for bulk Cr_2Te_3 (d) DSC data showing heating and cooling curves and (e) dH/dT vs. T curves.

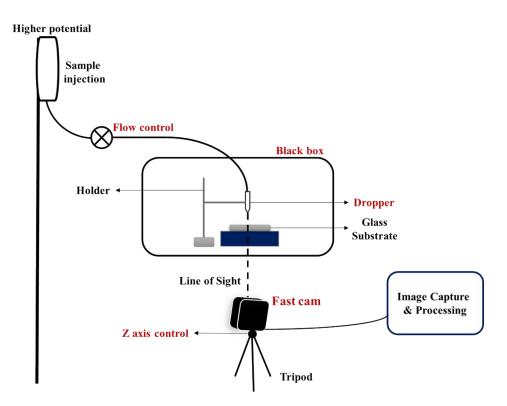

Figure S5: Intensity ratio shift of two major Raman bands during heating conditions (273 K to 297 K).

Figure S6: (a) *Final view of the 2D structure* Cr_2Te_3 *and (b) magnetic sublattice* Cr.

Figure S7: Magnetic sublattice Cr of the final system with possible orientations of the spin magnetic moment in the antiferromagnetic structure (a-h).

Figure S8: Schematic diagram of 2D Cr₂Te₃ drop on glass substrate for wettability study.

High speed camera specifications:

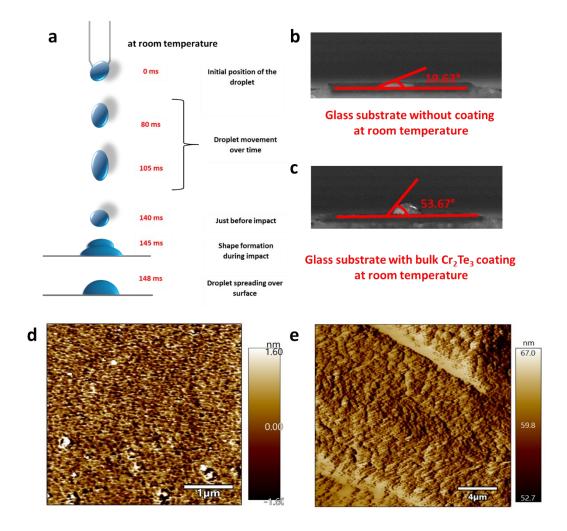
Model: Fastcam Mini UX 50 type 160 K-M-4G

Frame rate: 2000 fps

Shutter speed: 1/ frame sec

Resolution: 1280 x 1024

Frame count: 2180 frame

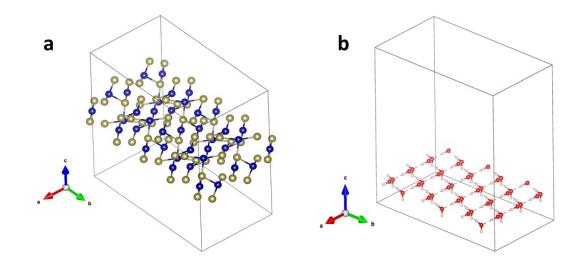

Rec duration: 1.09 sec

Trigger mode: Start

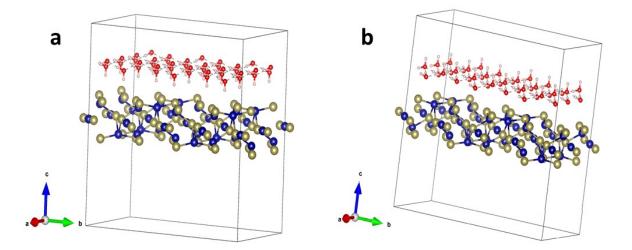
Zoom ratio: 422 % (Variable)

Camera_1 FASTCAM Mini UX50			
Frame rate : Shutter speed :			
Resolution :			
Frame no. : Frame count :			
Rec duration :			
Current time :			
Trigger mode :			
Zoom ratio :			
Measurements #1	: Angle = 53.6732(deg		
	ree)		
		1	

Figure S9: Single frame captured during measurement of water contact angle (Bulk Cr_2Te_3 in this case) from Photron photo viewer software (PFV4 (×64)).


Figure S10: (a) Schematic representation of water drop falling on a surface, Contact angle measurement on (b) plane glass substrate and (c) bulk Cr_2Te_3 coating, Surface morphology obtained by AFM (d) 2D Cr_2Te_3 and (e) Bulk Cr_2Te_3 .

Surface Interaction studies:


We have considered two cases of ice attachment to chromium telluride (Figure S11). The formation energy E^{form} of the 1L-H₂O/Cr₂Te₃ structure was calculated as follows:

$$E^{form} = E^{tot}(1L - H_2 O/Cr_2 Te_3) - E^{tot}(1L - H_2 O) - E^{tot}(1L - Cr_2 Te_3)$$
(S1)

where, $E^{tot}(1L-H_2O/Cr_2Te_3)$, $E^{tot}(1L-H_2O)$ and $E^{tot}(1L-Cr_2Te_3)$ are the total energies of 1L-H₂O/Cr₂Te₃ structure, ice crystal monolayer and 1L-Cr₂Te₃ monolayer, respectively. The obtained vdW gap values between the Cr₂Te₃ and H₂O layers are 1.9 and 2.3 Å for the ferromagnetic and paramagnetic structure, respectively. The formation energies of different combinations are tabulated in **Table S1**.

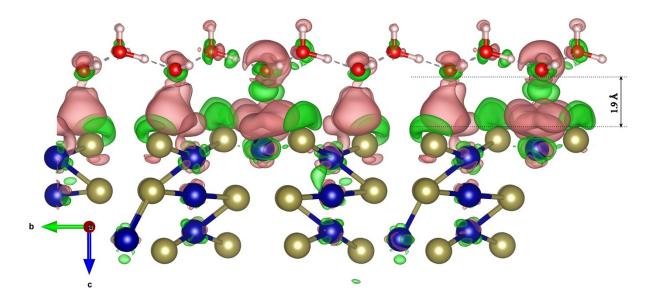

Figure S11: (a) 1L- $Cr_2Te_32 \times 2$ supercell and (b) 1L- $H_2O3 \times 3$ supercell

Figure S12: Two cases of ice attachment to chromium telluride. (a) Oxygen ions oriented towards the chromium telluride plane (O-oriented), (b) hydrogen ions oriented towards the chromium telluride plane (H-oriented).

Structure	a, b	Eform
	(Å)	(eV/H ₂ O)
1L-H ₂ O/Cr ₂ Te ₃ FM	a=12.72	0.242
Cr_2Te_3 O-faced toward H_2O	b=23.49	
1L-H ₂ O/Cr ₂ Te ₃ FM	a=12.73	0.258
Cr_2Te_3 H-faced toward H_2O	b=23.31	
1L-H ₂ O/Cr ₂ Te ₃ PM	a=12.57	0.390
Cr_2Te_3 O-faced toward H_2O	b=23.29	
1L-H ₂ O/Cr ₂ Te ₃ PM	a=12.59	0.385
Cr_2Te_3 H-faced toward H_2O	b=23.33	

Table S1. Structural parameters ($\alpha = 90^{\circ}$, $\beta = 90^{\circ}$) and calculated formation energy E^{form} for relaxed 1L-H₂O/Cr₂Te₃ heterostructures in four variants.

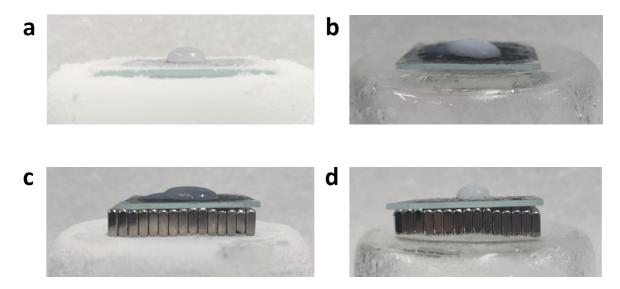


Figure S13: Charge transfer isosurface $(3 \cdot 10^{-4} \text{ e/Å})$ between ice and ferromagnetic Cr_2Te_3 monolayers. Red/green color correspond to the negative/positive charge difference. Dashed lines indicates the vdW gap between ice and substrate.

The charge transfer were computed using the following formalism:

$$\Delta \rho = \rho^{Cr_2 Te_3/H_2 0} - \rho^{1Ltext - Cr_2 Te_3} - \rho^{1Ltext - H_2 0}$$
(S2)

where $\rho^{Cr_2Te_3/H_2O}$ is the charge density for the ice/Cr₂Te₃ total monolayered structure, $\rho^{1Ltext - Cr_2Te_3}$ and $\rho^{1Ltext - H_2O}$ are charge density for the bare Cr₂Te₃ and bare H₂O monolayers, respectively. The charge transfer isosurface between ice and FM Cr₂Te₃ ML was 3 × 10⁻⁴ e/Å.

Figure S14: (a) Oil droplet on bare frozen surface (without magnetic field) at $0^{\circ}C$ and (b) at Room temperature (> 25 °C), (c) Oil droplet on application of external magnetic field at $0^{\circ}C$ and (d) at Room temperature (> 25 °C).