Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting information

Well-balanced Hole and Electron Charge Transport in an Organic P-type-Insulator-N-type Layered Sandwich Structure

Jaechan song ^a, Youngmin Han ^a, and Hocheon Yoo a, *

a Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea

* Corresponding author

Email address: hyoo@gachon.ac.kr (H. Yoo)

Fig. S1 (a) Transfer curve of PD transistor with gate leakage current in p-type mode operation, gate-source voltage (V_{GS}) ranging from -50 V to 20 V, drainsource voltage (V_{DS}) at -50 V. (b) Transfer curve of PPD transistor with gate leakage current in p-type mode operation, V_{GS} ranging from -50 V to 20 V, V_{DS} at -50 V.

Fig. S2 Dual sweep transfer curve of (a) PD and (b) PPD transistor with gate leakage current in p-type mode operation, V_{GS} ranging from -50 V to 20 V, V_{DS} increasing from -10 V to -50 V

Fig. S3 Transfer curve of a PD transistor in n-type mode with V_{GS} increasing from -20 V to 50 V and V_{DS} increasing variations.

Fig. S4 Output curve of a PD transistor in n-type mode with V_{DS} from 0 V to 50 V and V_{GS} variations.

Fig. S5 50 transfer curves measured to evaluate the uniformity of PD transistors and extract reliable electrical parameters

Fig. S6 Transfer curve of a PPD transistor in n-type mode with V_{GS} increasing from -20 V to 50 V and V_{DS} increasing variations.

Fig. S7 Output curve of a PD transistor in n-type mode with V_{DS} from 0 V to 50 V and V_{GS} variations.

Fig. S8 50 transfer curves measured to evaluate the uniformity of PPD transistors with balanced hole and electron currents due to the parylene interlayer and to extract reliable electrical parameters.

Fig. S9 The transfer curves of four PPD transistors located at the four edges of a 4-inch wafer, the voltage bias conditions of V_{GS} from -50 V to 20 V and V_{DS} from -10 V to -50 V.

Fig. S10 (a) actual images of PPD transistor with banded state, flat state. Transfer curve of (b) PPD and (c) PD transistor realized on the flexible substrate (Business card) with V_{GS} from -20 V to 20 V, V_{DS} from -10 V to -30 V.

Fig. S11 Histogram of drain current extracted from the (a) PD and (b) PPD transistor, the voltage bias condition was V_{GS} at -50 V, V_{DS} increasing from -20 V to -50 V.

Fig. S12 (a) Transfer curve of parylene/PTCDI-C13 transistor at $V_{DS} = 50$ V (b) Transfer curve of parylene/PTCDI-C13/parylene transistor at V_{DS} = 50 V.

Fig. S13 (a) Transfer curve of parylene/DNTT transistor at V_{DS} = -50 V (b) Transfer curve of parylene/parylene/DNTT transistor at V_{DS} = -50 V.

Fig. S14 XPS results for compositional analysis of organic small molecules (a) PTCDI-C13 and (b) DNTT

Fig. S15 Analysis of (a) PTCDI-C13 and (b) DNTT UPS examined to extract energy band diagrams.

Fig. S16 UV-visible results of (a) PTCDI-C13 and (b) DNTT analyzed to investigate the energy bandgap.

Fig. S17 Energy band diagram of DNTT, PTCDI-C13, Au.

Fig. S18 Voltage transfer curve of a Type 2 inverter with PD transistor as pull-up device and PPD transistor as pull-down device.

Table S1 Table for the recent fabrication methods and performance trends of ambipolar transistors.

PD transistor	$I_{\text{Hole}} (V_{GS} = -50 V)$	$IElectron$ (V _{GS} = 20 V)	V_{TS}
V_{DS} = -20 V	$6.61 \pm 2.16 \times 10^{-10}$	3.45 \pm 1.04 \times 10 ⁻⁷ A -23 \pm 2.83 V	
V_{DS} = -30 V	$8.65 \pm 6.67 \times 10^{-10}$	6.73 \pm 1.74 \times 10 ⁻⁷ A -29 \pm 6.04 V	
V_{DS} = -40 V	$9.90 \pm 7.83 \times 10^{-10}$	$1.09 \pm 0.25 \times 10^{-6}$ A -35 ± 5.20 V	
V_{DS} = -50 V		$1.08 \pm 0.87 \times 10^{-9}$ A $1.57 \pm 0.32 \times 10^{-6}$ A	-42 \pm 4.56 V

Table S2 Specifying the average values of I_{Hole} when V_{GS} is -50 V and V_{DS} is increased from -20 V to -50 V, $I_{Electron}$ when V_{GS} is 20 V and V_{DS} is increased from -20 V to -50 V, and V_{TS} when V_{DS} is increased from -20 V to -50 V in 50 PD transistor.

PPD transistor	$I_{\text{Hole}} (V_{GS} = -50 V)$	$IElectron (VGS = 20 V)$	V_{TS}
V_{DS} = -20 V	$2.00 \pm 0.34 \times 10^{-7}$	$1.37 \pm 0.84 \times 10^{8}$ A -2.18 \pm 2.83 V	
V_{DS} = -30 V	$2.74 \pm 0.39 \times 10^{-7}$	3.45 \pm 0.46 \times 10 ⁻⁷ A -5.98 \pm 2.62 V	
V_{DS} = -40 V	$3.39 \pm 0.56 \times 10^{-7}$	6.04 \pm 0.71 \times 10 ⁻⁷ A -9.54 \pm 2.56 V	
V_{DS} = -50 V	$\frac{1}{3.86} \pm 0.86 \times 10^{-7}$	9.45 \pm 1.07 \times 10 ⁻⁷ A	-14 ± 2.45 V

Table S3 Specifying the average values of I_{Hole} when V_{GS} is -50 V and V_{DS} is increased from -20 V to -50 V, $I_{Electron}$ when V_{GS} is 20 V and V_{DS} is increased from -20 V to -50 V, and V_{TS} when V_{DS} is increased from -20 V to -50 V in 50 PPD transistor.

- Reference

- [1]. . Z. Chen, M. Li, M. Hu, S. Wang, Z. Miao, S. Xu, C. Chen, H. Dong, W. Huang and R. Chen, *Journal of Materials Chemistry C*, 2020, **8**, 2094-2101.
- [2]. T. Kitamori, D. Yoo, K. Iijima, T. Kawamoto and T. Mori, *ACS Applied Electronic Materials*, 2019, **1**, 1633-1640.
- [3]. X. Zhao, T. Liu, H. Liu, S. Wang, X. Li, Y. Zhang, X. Hou, Z. Liu, W. Shi and T. J. S. Dennis, *ACS Appl. Mater. Interfaces*, 2018, **10**, 42715-42722.
- [4]. S. Guo, J. Yao, Y. Wang, L. Zhang, F. Zhai, X. Zhang, Y. Feng, W. Feng, X. Zhang and J. Jie, *Journal of Materials Chemistry C*, 2021, **9**, 5758-5764.
- [5]. M. Yoon and J. Lee, *Journal of Materials Chemistry C*, 2021, **9**, 9592-9598.
- [6]. Y. Wang, Q. Liao, D. She, Z. Lv, Y. Gong, G. Ding, W. Ye, J. Chen, Z. Xiong and G. Wang, *ACS Appl. Mater. Interfaces*, 2020, **12**, 15370-15379.