Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Configuration-Dependent Hollow Heterostructures for Highly Efficient Photocatalytic Hydrogen Evolution

Yingqiang Li[#], Tao Zhang[#], Yifan Liu, Chao Liu, Jingwen Sun, Jianfei Che*, Pan Xiong*, Junwu Zhu

Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

[#]These authors contributed equally.

*Corresponding author: <u>xiaoche@mail.njust.edu.cn; pan.xiong@njust.edu.cn</u>

Experimental

Chemicals

Sodium dodecyl sulfate ($C_{12}H_{25}SO_4Na$, SDS), potassium persulfate ($K_2S_2O_8$, KPS), styrene (C_8H_8), titanium dioxide (TiO₂), potassium carbonate (K_2CO_3), lithium carbonate (Li_2CO_3), tetrabutylammonium hydroxide ($C_{16}H_{37}NO$), poly dimethyl diallyl ammonium chloride (PDDA, $C_8H_{16}NCl)_n$), hydrochloric acid (HCl), and urea (CH₄N₂O) were procured from Aladdin Chemistry Co. Ltd. All chemicals were of analytical reagent grade and used without further purification.

Material characterization

Phase analysis of the samples was conducted using X-ray powder diffraction (XRD) on a Rigaku/MiniFlex600 instrument. Surface functional groups and chemical compositions of the products were characterized using Fourier transform infrared spectroscopy (FT-IR, NICOLETIS10) and X-ray photoelectron spectroscopy (XPS, ESCALAB250Xi). Morphological structures of the products were examined using a scanning electron microscope (SEM, Hitachi S4800) and a transmission electron microscope (TEM, JEOL JEM-2100) operated at 200 kV. Optical properties of the products were assessed using UV-vis diffuse-reflectance spectroscopy (UV-2550) and photoluminescence spectroscopy (PL, FLS1000) at room temperature. Reactive oxygen species (ROS), including electrons (e⁻) and holes (h⁺), in the composite solutions were identified and quantified using electron spin resonance spectroscopy (ESR, JESFA200).

Photocatalytic activity

Photocatalytic hydrogen production was quantified using an online system (LbSolar-3AG, PerfectLight, Beijing). 10 mg of the photocatalysts were dispersed in a 100 mL aqueous solution consisting of 90 mL water and 10 mL triethanolamine. Pt (serving as a co-catalyst) was subsequently deposited onto the material using the photo-deposition method. A solution of H₂PtCl₆·6H₂O at 3 wt.% (relative to Pt) was introduced, degassed, and subsequently irradiated with a 300 W Xenon lamp (PLS-SXE 300C (BF), PerfectLight, Beijing) equipped with an AM-1.5 filter or an optical filter ($\lambda >$ 420 nm). Gas concentration was analyzed using an online gas chromatograph (GC D7900P, TCD detector). Thermogravimetric analysis (TGA, TGA5500) was employed to assess sample weight loss, with a heating rate of 10 °C/min from room temperature to 800 °C.

Photoelectrochemical Experiments

Electrochemical impedance spectroscopy (EIS), transient photocurrent and Mott-Schottky plots were tested on CHI 660E (Chenhua Instrument, Shanghai, China) with a typical three-electrode cell employed 0.2 M Na₂SO₄ aqueous solution as the electrolyte. Ag/AgCl electrode and Pt wire were used as reference and counter electrodes, respectively. The working electrode was prepared as follows: 5 mg of photocatalyst was dispersed into mixed solution including ethanol (250 μ L), ethylene glycol (250 μ L), and Nafion (40 μ L) and then sonicated for 20 min. Then, the above solution (80 μ L) was dropped onto a precleaned fluorine tin oxide (FTO) glass with an exposed area of 1 cm². A 300 W Xenon (Xe) lamp equipped with a 420 nm cutoff filter served as the visible light source. The photocurrent responses of the photocatalysts to light switching on and off were measured with 1.2 V bias voltage. EIS spectra were recorded in the range from 0.01 to 10⁵ Hz at an ac voltage of 10 mV. Mott-Schottky plots of material were then tested at 500 Hz frequencies by using the Impedance-Potential mode.

Theoretical calculation

The density functional theory (DFT) calculations were performed by Vienna Ab-initio simulation package (VASP). The exchange and correlation interactions were calculated by using generalized-gradient approximations (GGA) and Perdew-Burke-Ernzerhof (PBE) functional. For the calculation of electronic properties, the more accurate hybrid functional Heyd-Scuseria-Ernzerhof (HSE06) was also used to correct the results. The energy cutoff of electron wave functions was set to 600 eV and the k-point meshes of $6 \times 4 \times 1$ are used. The calculated lattice parameters of anatase TiO₂ are a = b = 3.784 Å and c = 9.515 Å. The optimized lattice parameters of monolayer g-C₃N₄ are a = b = 4.785 Å. All the atomic positions are fully relaxed until the force is smaller than 0.01 eV/Å and the energy tolerances less than 1.0×10^{-6} eV per atom.

Figure S1 (a-b) SEM and (c-d) TEM images of PS microsphere modified with PDDA.

Figure S2 (a-b) SEM and (c-d) TEM images of $Ti_{0.87}O_2/PS$ sphere.

Figure S3 (a-b) SEM and (c-d) TEM images of $g-C_3N_4/Ti_{0.87}O_2/PS$ sphere.

Figure S4 (a) TEM micrographs, (b) high-resolution TEM image, (c) SAED pattern and (d) elemental distribution mapping of A-TiO₂/g-C₃N₄.

Figure S5 TGA curve of g-C₃N₄/Ti_{0.87}O₂/PS, g-C₃N₄ and Ti_{0.87}O₂.

Figure S6 The Raman spectra of $g-C_3N_4/A-TiO_2$, $A-TiO_2/g-C_3N_4$, $A-TiO_2$ and $g-C_3N_4$.

Figure S7 (a) Time course of hydrogen evolution and (b) comparison of hydrogen evolution rates for $g-C_3N_4/A-TiO_2$, $A-TiO_2/g-C_3N_4$, $A-TiO_2$ and $g-C_3N_4$ under visible light.

Figure S8 (a) Time course of hydrogen evolution and (b) comparison of hydrogen evolution rates for A-TiO₂, $g-C_3N_4$, $g-C_3N_4/Ti_{0.87}O_2/PS$ and PS materials.

Figure S9 ESR spectra of e^- of $g-C_3N_4/A-TiO_2$, $A-TiO_2/g-C_3N_4$, $g-C_3N_4$ and TiO_2 when exposed to solar light for a duration of 9 minutes.

Figure S10 ESR spectra of (a) e^- of g-C₃N₄, (b) e^- of TiO₂, (c) h^+ of g-C₃N₄, (d) h^+ of TiO₂, (e) •OH of g-C₃N₄ and (f) •OH of TiO₂ under solar light irradiation for various times.

Figure S11 ESR spectra of (a) e^- of A-TiO₂/g-C₃N₄, (b) e^- of g-C₃N₄/ A-TiO₂, (c) h⁺ of A-TiO₂/g-C₃N₄, (d) h⁺ of g-C₃N₄/ A-TiO₂, (e) •OH of A-TiO₂/g-C₃N₄ and (f) •OH of g-C₃N₄/ A-TiO₂ under solar light irradiation for various times.

Figure S13 Mott-Schottky plots at different frequencies of A-TiO₂.

Figure S14 Mott-Schottky plots at different frequencies of g-C₃N₄.

Figure S15 Mott-Schottky plots at different frequencies of A-TiO_2/g-C_3N_4.

Figure S16 Mott-Schottky plots at different frequencies of g-C₃N₄/A-TiO₂.

Figure S17 The optimized structures of A-TiO₂/g-C₃N₄ heterostructure.

Figure S18 Charge density difference of $A-TiO_2/g-C_3N_4$ heterostructure. The yellow and blue in the figure represent the accumulation and loss of electrons.

Figure S19 An illustration of photocatalytic mechanism of g-C₃N₄/TiO₂ under visible light.

Sample	Zeta Potential (mV)	Standard Deviation (mV)
g-C ₃ N ₄	-12.8	5.72
$\mathrm{Ti}_{0.87}\mathrm{O}_2$	-35.5	4.54
PDDA/PS	+22.8	3.82

 Table S1 Comparison of Zeta potential of samples in the pure water.