Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Poly(vinyl alcohol)-assisted synthesis of 3D Bi₂S₃ submicrometric structures toward feasible chip photodetector applications

Krystian Mistewicz¹, Marcin Godzierz^{2,*}, Anna Gawron², Łukasz Otulakowski², Anna Hercog^{2,3}, Klaudia Kurtyka², Sugato Hajra⁴, Hoe Joon Kim⁴

¹ Silesian University of Technology, Institute of Physics – Center for Science and Education, Krasińskiego 8 Str., 40-019 Katowice, Poland; krystian.mistewicz@polsl.pl

² Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowskiej 34 Str., 41-819 Zabrze, Poland; mgodzierz@cmpw-pan.pl, agawron@cmpw-pan.pl, lotulakowski@cmpwpan.pl, ahercog@cmpw-pan.pl, kkurtyka@cmpw-pan.pl

³ SPIN-Lab Centre for Microscopic Research on Matter, University of Silesia in Katowice, 75 Pułku Piechoty 1 str., 41-500 Chorzów, Poland; anna.hercog@us.edu.pl

⁴ Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea; sugatohajra@dgist.ac.kr, joonkim@dgist.ac.kr

* corresponding author: mgodzierz@cmpw-pan.pl

Fig. S1. Scheme of photodetector fabrication process: (a) drop-casting of Bi_2S_3 dispersion in ethanol onto ED-IDE1-Au chip, (b) solvent evaporation at 60°C, and (c) final chip-based photodetector with deposited particles. An inset in figure (c) shows SEM micrograph of the Bi_2S_3 (BS-PVA_{high} sample) deposited on the ED-IDE1-Au chip.

Table S1. A comparison of the energy band gaps of BS, $BS-PVA_{low}$, and $BS-PVA_{high}$ samples with literature data for Bi_2S_3 (used abbreviations: T – theoretical computations performed using first principle Density Functional Theory (DFT), E – experimental method of energy band gap determination based on UV-VIS spectroscopy).

Material	Method of material preparation	Energy band gap value, eV	Band gap type	Determination method	Ref.
Bi ₂ S ₃ film	atomic layer deposition	1.03	indirect	E	[1]
Bi ₂ S ₃	not applicable	1.32	indirect	Т	[2]
Bi ₂ S ₃ film	physical vapor deposition	1.32 – 1.36		E	[3]
Bi ₂ S ₃ film	reactive evaporation	1.38	direct	E	[4]
Bi ₂ S ₃ nanoflowers	hydrothermal method	1.39	direct	E	[5]
Bi ₂ S ₃ film	electrochemical synthesis	1.4	direct	E	[6]
Bi₂S₃ nanosheets	hydrothermal vulcanization	1.41	direct	E	[7]
Bi ₂ S ₃ nanocrystals	organometallic synthesis	1.443		E	[8]
Bi ₂ S ₃ nanowires	hydrothermal vulcanization	1.46	direct	E	[7]
Bi ₂ S ₃ nanoribbons	hydrothermal vulcanization	1.47	direct	E	[7]
Bi ₂ S ₃	not applicable	1.492	indirect	Т	[9]
Bi ₂ S ₃ film	atomic layer deposition	1.56	direct	E	[1]
Bi ₂ S ₃ film	chemical bath deposition	1.56	direct	E	[10]
Bi ₂ S ₃ film	successive ionic layer adsorption and reaction	1.61	direct	E	[11]
Bi ₂ S ₃ film	pulse-plating method	1.68	direct	E	[12]
BS	microwave synthesis	1.34(2)	direct	E	this work
BS-PVA _{high}	PVA-assisted microwave synthesis	1.41(1)	direct	E	this work
BS-PVA _{low}	PVA-assisted microwave synthesis	1.43(3)	direct	E	this work

Fig. S2. The transient photocurrent responses of Bi_2S_3 nanosheets (BS-PVA_{high} sample) to switching ON and OFF green light illumination (λ =517 nm) measured for different light intensities (a) I_L =915 μ W/cm², (b) I_L =619 μ W/cm², (c) I_L =323 μ W/cm², (d) I_L =183 μ W/cm², (e) I_L =86 μ W/cm², (f) I_L =36 μ W/cm², (g) I_L =5.9 μ W/cm², (h) I_L =2.3 μ W/cm², (i) I_L =0.95 μ W/cm² (U=1 V, T=20°C, RH=30%).

Fig. S3. The transient photocurrent responses of Bi_2S_3 nanosheets (BS-PVA_{high} sample) to switching ON and OFF red light illumination (λ =628 nm) measured for different light intensities (a) I_L =332 μ W/cm², (b) I_L =202 μ W/cm², (c) I_L =92 μ W/cm², (d) I_L =48 μ W/cm², (e) I_L =20 μ W/cm², (f) I_L =7.7 μ W/cm², (g) I_L =0.98 μ W/cm², (h) I_L =0.34 μ W/cm², (i) I_L =0.13 μ W/cm² (U=1 V, T=20°C, RH=30%).

References

- Mahuli N, Saha D, Sarkar SK. Atomic Layer Deposition of p-Type Bi2S3. J Phys Chem C [Internet]. 2017(e)ko apirilakaren 13a;121(14):8136–44. Available at: https://doi.org/10.1021/acs.jpcc.6b12629
- Koc H, Ozisik H, Deligöz E, Mamedov AM, Ozbay E. Mechanical, electronic, and optical properties of Bi2S3 and Bi2Se3 compounds: first principle investigations. J Mol Model [Internet]. 2014(e)ko ;20(4):2180. Available at: https://doi.org/10.1007/s00894-014-2180-1
- ten Haaf S, Sträter H, Brüggemann R, Bauer GH, Felser C, Jakob G. Physical vapor deposition of Bi2S3 as absorber material in thin film photovoltaics. Thin Solid Films [Internet]. 2013(e)ko ;535:394–7. Available at: https://www.sciencedirect.com/science/article/pii/S0040609012015866
- 4. Lukose J, Pradeep B. Electrical and optical properties of bismuth sulphide [Bi2S3] thin films prepared by reactive evaporation. Solid State Commun [Internet]. 1991(e)ko ;78(6):535–8. Available at: https://www.sciencedirect.com/science/article/pii/0038109891903712
- Sharma S, Khare N. Sensitization of narrow band gap Bi2S3 hierarchical nanostructures with polyaniline for its enhanced visible-light photocatalytic performance. Colloid Polym Sci [Internet]. 2018(e)ko ;296(9):1479–89. Available at: https://doi.org/10.1007/s00396-018-4362-3
- Grubač Z, Katić J, Metikoš-Huković M. Energy-Band Structure as Basis for Semiconductor n-Bi2S3/n-Bi2O3 Photocatalyst Design. J Electrochem Soc [Internet]. 2019(e)ko ;166(10):H433. Available at: https://dx.doi.org/10.1149/2.0481910jes
- Liang YC, Li TH. Controllable morphology of Bi2S3 nanostructures formed via hydrothermal vulcanization of Bi2O3 thin-film layer and their photoelectrocatalytic performances.
 2022(e)ko ;11(1):284–97. Available at: https://doi.org/10.1515/ntrev-2022-0016
- Aresti M, Saba M, Piras R, Marongiu D, Mula G, Quochi F, et al. Colloidal Bi2S3 Nanocrystals: Quantum Size Effects and Midgap States. Adv Funct Mater [Internet]. 2014(e)ko ekainakaren 1a;24(22):3341–50. Available at: https://doi.org/10.1002/adfm.201303879
- 9. Ben Abdallah H, Ouerghui W. Spin–orbit coupling effect on electronic, linear and nonlinear optical properties of Bi2S3 and the ternary bismuth sulfide Bi2S2.75Se0.25: Ab-initio calculations. Opt Quantum Electron [Internet]. 2021(e)ko ;54(1):20. Available at: https://doi.org/10.1007/s11082-021-03411-y
- Moreno-García H, Messina S, Calixto-Rodriguez M, Martínez H. Physical properties of chemically deposited Bi2S3 thin films using two post-deposition treatments. Appl Surf Sci [Internet]. 2014(e)ko ;311:729–33. Available at: https://www.sciencedirect.com/science/article/pii/S0169433214011878
- 11. Suresh Kumar M, Madhusudanan SP, Mohanta K, Batabyal SK. Development and characterization of photodiode from p-Cu2CdSnS4/n-Bi2S3 heterojunction. Mater Res Express [Internet]. 2020(e)ko ;7(1):15909. Available at: https://dx.doi.org/10.1088/2053-1591/ab65e1
- Ding F, Wang Q, Zhou S, Zhao G, Ye Y, Ghomashchi R. Synthesis of Bi2S3 thin films based on pulse-plating bismuth nanocrystallines and its photoelectrochemical properties. R Soc Open Sci [Internet]. 2020(e)ko abuztuakaren 12a;7(8):200479. Available at: https://doi.org/10.1098/rsos.200479