Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

## **Supporting Information**

# Achieving 18.92 % efficiency of non-fullerene organic solar cells with active layer morphology optimization by regulating solvent evaporation dynamics

Mandi Li, Fenghua zhang, Xiong Li\*, Dan Wang, Yang Liu, Denghui Xu, Jia Zhao, Yaohui Zhu, Jun Zhou

Department of Physics, Beijing Technology and Business University, Beijing 100048, China

E-mail: lixiong@btbu.edu.cn

#### **Experimental Section:**

#### **1.Materials:**

Polymer donor D18, non-fullerene acceptor L8-BO and cathode buffer layer material PDINN were purchased from Solarmer Material Inc. Anode buffer layer PEDOT: PSS was obtained from Heraeus (Clevios P Al4083). Solvent chloroform (CF) and toluene (Tol) were obtained from J&K Scientific Ltd. The pre-patterned indium tin oxide (ITO) coated glass substrates (sheet resistance of 15  $\Omega$ /Sq) were obtained from Huananxiangcheng Technology Co. High-purity argentum (purity>99.99%) was used for the evaporation of electrode. All the materials were used as received without any further treatment.

#### **2.Solution Preparation:**

D18:L8-BO were dissolved in CF or CF:Tol solvent at a concentration of 7.2 mg/ml with weight ratio of 1:1, and then the blend solution was stirred at least 6 h at 50 °C. The cathode buffer layer solution was prepared by dissolving PDINN in methanol (2 mg/ml) and then stirred overnight at room temperature.

#### **3.Device Fabrication:**

Patterned ITO electrode was cleaned by sequential sonication in deionized water, acetone, ethyl alcohol each for 30 min, then dried by high-purity nitrogen gas. After 8 min ultraviolet-ozone treatment for the ITO substrate, anode buffer layer was prepared by spin-coating PEDOT:PSS aqueous solution with speed of 3500 rpm and then thermal-annealed at 150 °C for 30 min, then the PEDOT: PSS anode buffer layer was obtained with the thickness of about 30 nm. After that, the treated ITO/PEDOT:PSS films were transferred into a high-purity nitrogen-filled glove box (<0.01 ppm O<sup>2</sup> and H<sub>2</sub>O) to fabricate active layers and cathode interlayers. The D18:L8-BO blend films were spin-coated onto the PEDOT:PSS layer with a thickness of about 100 nm. Subsequently, PDINN interlayer was obtained by spin-casting on top of active layers with the thickness of about 10 nm. Finally, Ag of about 100 nm was thermally deposited

on the PDIN layer under the vacuum of  $2 \times 10^{-4}$  Pa, and the deposition rate and thickness of Ag was in situ recorded with a quartz crystal oscillator monitor. The effective area of organic solar cells is 0.045 cm<sup>2</sup>, which is defined by the overlap of ITO anode and Ag cathode.

#### 4. Instruments and Characterization:

The J-V characteristics of the OSCs were measured in a nitrogen glove box with a Keithley 2410 Source Measure under 100 mW/cm<sup>2</sup> illumination with AM 1.5 solar simulator (San-Ei Electric). AM 1.5 G solar simulator was calibrated by standard silicon solar cells (purchased from Enlitech). The ultraviolet-visible-near infrared (UV-Vis-NIR) absorption spectra were conducted with Hatachi-U3900H spectrophotometer. The photoluminescence (PL) spectra of the films were performed with fluorescence spectrometer (Spex Fluorolog-3). The external quantum efficiency (EQE) was conducted with a solar cell QE/IPCE measurement system (Zolix solar cell scan100). Transient photovoltage (TPV), transient photocurrent (TPC) and photo-induced charge extraction linear increasing voltage (Photo-CELIV) were conducted with the Paios system (FLUXiM AG, Switzerland). The integrated power of the LED for the Paios system is 720 W/m<sup>2</sup>. AFM measurements were performed with a Bruker-Fast scan ultrafast DI AFM. The GIWAXS data were obtained at 1W1A Diffuse X-ray Scattering Station, Beijing Synchrotron Radiation Facility (BSRF-1W1A). The contact angle images were obtained with contact angle measurement system (Dataphysics OCA15Pro). The optimized thickness of the active layer is ~100 nm, which was measured by Bruker Stylus Profile (Dektak XT, Bruker Corporation).

### 5. Additional experimental results:



Figure S1. Statistical results of PCE for the OSCs with different CF:Tol ratio.



Figure S2. The absorbance curves of D18:L8-BO blend films with different CF:Tol ratio.



**Figure S3**. AFM height images of D18:L8-BO films obtained from (a) CF and (b-d) CF:Tol mixed solvent.

**Table S1.** Summary of the photovoltaics parameters of OSCs prepared with differentCF:Tol ratio under illumination of AM 1.5G, 100 mA/cm².

| CF:Tol      | $J_{ m SC}$ | Jcal <sup>a</sup> | $V_{\rm OC}$ | FF    | PCE                                          |
|-------------|-------------|-------------------|--------------|-------|----------------------------------------------|
|             | $(mA/cm^2)$ | $(mA/cm^2)$       | (V)          | (%)   | (%)                                          |
| 1:0         | 25.90       | 24.62             | 0.923        | 74.99 | 17.89 <sup>b</sup> (17.76±0.16) <sup>c</sup> |
| 0.975:0.025 | 26.17       | 24.91             | 0.927        | 76.08 | 18.47 <sup>b</sup> (18.31±0.17) <sup>c</sup> |
| 0.950:0.050 | 26.43       | 25.28             | 0.927        | 77.24 | 18.92 <sup>b</sup> (18.83±0.08) <sup>c</sup> |
| 0.925:0.075 | 26.19       | 24.95             | 0.921        | 76.77 | 18.52 <sup>b</sup> (18.40±0.13) <sup>c</sup> |
| 0.900:0.100 | 25.60       | 24.47             | 0.911        | 74.82 | 17.45 <sup>b</sup> (17.32±0.12) <sup>c</sup> |

<sup>a</sup> The integral current density from EQE spectra, <sup>b</sup> the maximum values of the devices, <sup>c</sup> the average values and deviation obtained from 20 devices.

| CErTal |                      | In plane     |        | Out of plane |              |        |  |
|--------|----------------------|--------------|--------|--------------|--------------|--------|--|
| CI.101 | $q(\text{\AA}^{-1})$ | d-spacing(Å) | CCL(Å) | q(Å-1)       | d-spacing(Å) | CCL(Å) |  |

Table S2. GIWAXS parameters of the OSCs prepared different CF:Tol ratio.

| 1:0       | 0.3170 | 19.82 | 18.17 | 1.7186 | 3.66 | 15.09 |
|-----------|--------|-------|-------|--------|------|-------|
| 0.95:0.05 | 0.3270 | 19.21 | 18.08 | 1.7353 | 3.62 | 18.16 |

 Table S3. Water contact angle related parameters.

| -     |             |           |                                                                                                         |
|-------|-------------|-----------|---------------------------------------------------------------------------------------------------------|
| D18   | L8-BO       | D18:L8-BO | D18:L8-BO                                                                                               |
|       |             | CF        | CF:Tol(0.95:0.05)                                                                                       |
| 106.9 | 94          | 103.9     | 101.15                                                                                                  |
| /     | /           | 22.8      | 44.1                                                                                                    |
|       | D18 106.9 / | D18 L8-BO | D18       L8-BO       D18:L8-BO         CF       06.9       94       103.9         /       /       22.8 |