Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Suppl. Info. Significant Joule self-heating pervasive in the emergent thin-film transistor studies. 11 Oct. 2024

TABLE: Significant Joule self-heating pervasive in the emergent thin-film transistor studies.

V. Bruevich,^{1,*} Y. Patel,² J. P. Singer,² and V. Podzorov^{1,*}

¹ Dept. of Physics & Astronomy, Rutgers University, 136 Frelinghuysen Rd, Piscataway, NJ 08854, USA.

² Dept. of Mechanical & Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA.

* E-mails: bruevich@physics.rutgers.edu, podzorov@physics.rutgers.edu

TABLE S1. A few illustrative cases of field-effect transistor (FET) studies of metal-halide perovskites, conjugated polymers, and small-molecule organic semiconductors, where high power density (P_{max}) and/or power (W_{max}) have been apparently reached in the transistors' channel. Parameters, including the channel width (W) and length (L), the effective source-drain electric field (E_{DS}), and the maximum source-drain current ($|I_{DS}|^{max}$), are also listed, along with the studied material and the corresponding Figure.

 E_{DS} is the effective longitudinal (source-drain) electric field in a FET channel applied during the recording of transfer curves corresponding to the extracted W_{max} and P_{max} , defined as $E_{DS} \equiv |V_{DS}|/L$, where V_{DS} is the source-drain voltage applied during the measurement, and L is the channel length.

 W_{max} is the maximum apparent electric power dissipated in the channel of the reported FET, calculated from the corresponding transfer curve as $W_{max} \equiv |I_{DS}|^{max} \cdot |V_{DS}|$.

 P_{max} is the corresponding maximum apparent electric power density emitted in the channel, calculated from the reported transfer curve as $P_{\text{max}} \equiv |I_{\text{DS}}|^{\text{max}} \cdot |V_{\text{DS}}|/(LW)$.

For the control experiment on infra-red imaging of the surface temperature distribution of biased devices, emulating specific experimental conditions used in Ref. [1], see Supplementary video (a separate file).

#	Reference	semiconductor	Fig.	<i>W</i> (μm)	<i>L</i> (μm)	<i>I</i> _{DS} ^{max} (A)	E _{DS} (kV·cm ⁻¹)	W _{max} (W)	P _{max} (W·cm ⁻²)*
1	H. Zhu et al., Nat. Electron. (2023) ¹	Hybrid tin halide perovskite, (Cs _x FA _{1-x})PEA ₂ Sn ₈ I ₂₅ , x = 10%)	1c	1000	200	0.01	2	0.4	200
2	A. Liu et al., Nat. Electron. (2022) ²	Tin halide perovskite, CsSnl₃	1d	1000	150	6.8×10 ⁻³	2.67	0.27	181
3	W. Yang et al., Adv. Mater. (2024) ³	Hybrid tin halide perovskite, FASnI3 with F- PEAI	3i	1000	100	9×10 ⁻³	4	0.36	361
4	F. Yang et al., Org. Electron. (2016) ⁴	Conj. polymer, P2MDPP2T- DTT	2c	1400	40	4.23×10 ⁻³	25	0.42	755
5	Y. Ji et al., Adv. Mater. (2016)⁵	Conj. polymer, PDPPMT-2T	2c	1400	40	4×10 ⁻³	25	0.4	709

^{*} For comparison:

⁽a) The working surface of a typical household clothes iron emits about 0.36 W·cm⁻² at full-power operation.

⁽b) The integral power density emitted by the Sun at its surface is \sim 6.4 kW·cm⁻².

⁽c) The power density of a CO₂ laser beam in industrial laser cutting machines for plastics, wood and leather is 3 - 10 kW·cm⁻².

#	Reference	semiconductor	Fig.	<i>W</i> (μm)	<i>L</i> (μm)	<i>I</i> _{DS} ^{max} (A)	E _{DS} (kV·cm⁻¹)	W _{max} (W)	P _{max} (W·cm ⁻²)*
6	Y. Diao <i>et al.,</i> Nat. Mater. (2013) ⁶	Small mol., TIPS-pentacene	5b	1000	50	2×10 ⁻³	20	0.2	400
7	A. Zhang et al., Macromol. (2016) ⁷	Conj. polymer, PDPP4T-2M	3c	1400	50	2.8×10 ⁻³	20	0.28	400
8	J. Lee et al., J. Am. Chem. Soc. (2013) ⁸	Conj. polymer, PTDPPSe-SiC4	5d	1000	50	2.12×10 ⁻³	20	0.21	424
9	HR. Tseng <i>et al.,</i> Nano Lett. (2012) ⁹	Conj. polymer, PCDTBT	3c	1000	20	6.4×10 ⁻³	20	0.26	1280
10	J. Mahmood et al., Adv. Mater. (2021) ¹⁰	2D fused aromatic networks (43 nm-thick)	4c	4	0.5	1.55×10 ⁻³	2	1.6×10 ⁻⁴	7750
11	V. K. Bandari et al., Adv. Funct. Mater. (2019) ¹¹	Small mol., BTBT-T ₆	4b	5	4.4	6.7×10 ⁻⁵	52	1.5×10 ⁻³	7052
12	J. Liu et al., Nat. Commun. (2015) ¹²	Small mol., 2,6-diphenylanthracene	3a	3.3	16.5	9.2×10 ⁻⁶	36	0.6×10 ⁻³	1000
13	H. Li et al., J. Am. Chem. Soc. (2012) ¹³	C ₆₀	4b	8.7	40	1.6×10 ⁻⁵	25	1.6×10 ⁻³	457
14	G. Giri <i>et al.,</i> Nature (2011) ¹⁴	Small mol. <i>,</i> TIPS-pentacene	4c	1000	50	6.25×10 ⁻⁴	20	62.5×10 ⁻³	125
15	H. lino <i>et al.,</i> Nat. Commun. (2015) ¹⁵	Small mol., Ph-BTBT-C ₁₀	3b	500	100	10 ⁻³	10	0.1	200
16	HR. Tseng <i>et al.,</i> Adv. Mater. (2014) ¹⁶	Conj. polymer, PCDTPT	1c	1000	80	1.53×10 ⁻³	10	0.12	153
17	C. Luo et al., Nano Lett. (2014) ¹⁷	Conj. polymer, PCDTPT	4c	800	80	1.2×10 ⁻³	10	0.1	150

For the analysis of FET mobilities and the corresponding mobility reliability factors in some of these papers, see Refs. [18-21].

ACKNOWLEDGEMENT: VB and VP thank partial support of their research at Rutgers University via the Donald H. Jacobs Chair in Applied Physics.

REFERENCES:

- 1. H. Zhu, W. Yang, Y. Reo, G. Zheng, S. Bai, A. Liu and Y.-Y. Noh, Tin perovskite transistors and complementary circuits based on A-site cation engineering, *Nat. Electron.*, 2023, **6**, 650-657.
- 2. A. Liu, H. Zhu, S. Bai, Y. Reo, T. Zou, M.-G. Kim and Y.-Y. Noh, High-performance inorganic metal halide perovskite transistors, *Nat. Electron.*, 2022, **5**, 78-83.
- 3. W. Yang, K. Zhang, W. Yuan, L. Zhang, C. Qin and H. Wang, Enhancing stability and performance in tin-based perovskite field-effect transistors through hydrogen bond suppression of organic cation migration, *Adv. Mater.*, 2024, **36**, 2313461.

- 4. F. Yang, C. Li, J. Zhang, G. Feng, Z. Wei and W. Li, Methylated conjugated polymers based on diketopyrrolopyrrole and dithienothiophene for high performance field-effect transistors, *Org. Electron.*, 2016, **37**, 366-370.
- 5. Y. Ji, C. Xiao, Q. Wang, J. Zhang, C. Li, Y. Wu, Z. Wei, X. Zhan, W. Hu, Z. Wang, R. A. J. Janssen and W. Li, Asymmetric diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells processed from a nonchlorinated solvent, *Adv. Mater.*, 2016, **28**, 943-950.
- Y. Diao, B. C. K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld and Z. Bao, Solution coating of large-area organic semiconductor thin films with aligned singlecrystalline domains, *Nat. Mater.*, 2013, **12**, 665-671.
- A. Zhang, C. Xiao, Y. Wu, C. Li, Y. Ji, L. Li, W. Hu, Z. Wang, W. Ma and W. Li, Effect of fluorination on molecular orientation of conjugated polymers in high performance field-effect transistors, *Macromolecules*, 2016, 49, 6431-6438.
- 8. J. Lee, A. R. Han, H. Yu, T. J. Shin, C. Yang and J. H. Oh, Boosting the ambipolar performance of solutionprocessable polymer semiconductors via hybrid side-chain engineering, *J. Am. Chem. Soc.*, 2013, **135**, 9540-9547.
- 9. H.-R. Tseng, L. Ying, B. B. Y. Hsu, L. A. Perez, C. J. Takacs, G. C. Bazan and A. J. Heeger, High mobility field effect transistors based on macroscopically oriented regioregular copolymers, *Nano Lett.*, 2012, **12**, 6353-6357.
- 10. J. Mahmood, E. K. Lee, H.-J. Noh, I. Ahmad, J.-M. Seo, Y.-K. Im, J.-P. Jeon, S.-J. Kim, J. H. Oh and J.-B. Baek, Fused aromatic network with exceptionally high carrier mobility, *Adv. Mater.*, 2021, **33**, 2004707.
- V. K. Bandari, Y. Gu, S. Shi, Y. Nan, K. He, Y. Li, N. Bandari, S. Moradi, H. Tian, F. Zhu, Y. Geng, D. Yan and O. G. Schmidt, Fully integrated microscale quasi-2D crystalline molecular field-effect transistors, *Adv. Funct. Mater.*, 2019, **29**, 1903738.
- 12. J. Liu, H. Zhang, H. Dong, L. Meng, L. Jiang, L. Jiang, Y. Wang, J. Yu, Y. Sun, W. Hu and A. J. Heeger, High mobility emissive organic semiconductor, *Nat. Commun.*, 2015, **6**, 10032.
- 13. H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee and Z. Bao, High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals, *J. Am. Chem. Soc.*, 2012, **134**, 2760-2765.
- 14. G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney and Z. Bao, Tuning charge transport in solution-sheared organic semiconductors using lattice strain, *Nature*, 2011, **480**, 504-508.
- 15. H. lino, T. Usui and J.-i. Hanna, Liquid crystals for organic thin-film transistors, *Nat. Commun.*, 2015, **6**, 6828.
- 16. H.-R. Tseng, H. Phan, C. Luo, M. Wang, L. A. Perez, S. N. Patel, L. Ying, E. J. Kramer, T.-Q. Nguyen, G. C. Bazan and A. J. Heeger, High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers, *Adv. Mater.*, 2014, **26**, 2993-2998.

- 17. C. Luo, A. K. K. Kyaw, L. A. Perez, S. Patel, M. Wang, B. Grimm, G. C. Bazan, E. J. Kramer and A. J. Heeger, General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility, *Nano Lett.*, 2014, **14**, 2764-2771.
- 18. V. Bruevich and V. Podzorov, Zenodo, 2023, https://doi.org/10.5281/zenodo.10046994.
- 19. V. Podzorov and V. Bruevich, Safe practices for mobility evaluation in field-effect transistors and Hall effect measurements using emerging materials, *Nat. Electron.*, 2024, **7**, 266-268.
- 20. H. H. Choi, K. Cho, C. D. Frisbie, H. Sirringhaus and V. Podzorov, Critical assessment of charge mobility extraction in FETs, *Nat. Mater.*, 2018, **17**, 2-7.
- 21. H. H. Choi, K. Cho, C. D. Frisbie, H. Sirringhaus and V. Podzorov, Table: Critical assessment of charge mobility extraction in field-effect transistors, *Zenodo*, 2017, <u>https://doi.org/10.5281/zenodo.1050699</u>.