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TABLE S1. A few illustrative cases of field-effect transistor (FET) studies of metal-halide perovskites, conjugated 
polymers, and small-molecule organic semiconductors, where high power density (Pmax) and/or power (Wmax) 
have been apparently reached in the transistors’ channel. Parameters, including the channel width (W) and 
length (L), the effective source-drain electric field (EDS), and the maximum source-drain current (|IDS|max), are 
also listed, along with the studied material and the corresponding Figure.   

EDS is the effective longitudinal (source-drain) electric field in a FET channel applied during the recording of transfer 

curves corresponding to the extracted Wmax and Pmax, defined as EDS  |VDS|/L, where VDS is the source-drain 
voltage applied during the measurement, and L is the channel length.   

Wmax is the maximum apparent electric power dissipated in the channel of the reported FET, calculated from the 

corresponding transfer curve as Wmax  |IDS|max|VDS|.  

Pmax is the corresponding maximum apparent electric power density emitted in the channel, calculated from the 

reported transfer curve as Pmax  |IDS|max|VDS|/(LW).  

For the control experiment on infra-red imaging of the surface temperature distribution of biased devices, 
emulating specific experimental conditions used in Ref. [1], see Supplementary video (a separate file).  

# Reference semiconductor Fig. 
W 

(m) 

L 

(m) 
|IDS|max  

(A) 

EDS 
(kV·cm-1) 

Wmax 

(W)   

Pmax 

(Wcm - 2)  * 

1 
H. Zhu et al.,  

Nat. Electron. (2023)1 

Hybrid tin halide 
perovskite, 

(CsxFA1–x)PEA2Sn8I25, 
x = 10%) 

1c 1000 200 0.01 2 0.4 200 

2 
A. Liu et al.,  

Nat. Electron. (2022)2 
Tin halide perovskite, 

CsSnI3 
1d 1000 150 6.810-3 2.67 0.27 181 

3 
W. Yang et al.,  

Adv. Mater. (2024)3 

Hybrid tin halide 
perovskite, FASnI3 with F-

PEAI 
3i 1000 100 910-3 4 0.36 361 

4 
F. Yang et al.,  

Org. Electron. (2016)4 
Conj. polymer, P2MDPP2T-

DTT  
2c 1400 40 4.2310-3 25 0.42 755 

5 
Y. Ji et al.,  

Adv. Mater. (2016)5  
Conj. polymer, PDPPMT-2T 2c 1400 40 410-3 25 0.4 709 

                                                           
* For comparison:  

(a) The working surface of a typical household clothes iron emits about 0.36 Wcm-2 at full-power operation.  

(b) The integral power density emitted by the Sun at its surface is ~ 6.4 kW·cm-2.  

(c) The power density of a CO2 laser beam in industrial laser cutting machines for plastics, wood and leather is 3 - 10 kW·cm-2.  
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# Reference semiconductor Fig. 
W 

(m) 

L 

(m) 
|IDS|max  

(A) 

EDS 
(kV·cm-1) 

Wmax 

(W)   

Pmax 

(Wcm - 2)  * 

6 
Y. Diao et al.,  

Nat. Mater. (2013)6 
Small mol., TIPS-pentacene 5b 1000 50 210-3 20 0.2 400 

7 
A. Zhang et al.,  

Macromol. (2016)7 
Conj. polymer, PDPP4T-2M 3c 1400 50 2.810-3 20 0.28 400 

8 

J. Lee et al.,  
J. Am. Chem. Soc. 

(2013)8 

Conj. polymer,  
PTDPPSe-SiC4 

5d 1000 50 2.1210-3 20 0.21 424 

9 
H.-R. Tseng et al.,  
Nano Lett. (2012)9 

Conj. polymer,  
PCDTBT 

3c 1000 20 6.410-3 20 0.26 1280 

10 
J. Mahmood et al.,  

Adv. Mater. (2021)10 

2D fused aromatic 
networks 

(43 nm-thick) 
4c 4 0.5 1.5510-3 2 1.6×10-4 7750 

11 

V. K. Bandari et al.,  
Adv. Funct. Mater. 

(2019)11 

Small mol.,  
BTBT-T6 

4b 5 4.4 6.710-5 52 1.5×10-3 7052 

12 

J. Liu et al.,  
Nat. Commun. 

(2015)12 

Small mol.,  
2,6-diphenylanthracene 

3a 3.3 16.5 9.210-6 36 0.610-3 1000 

13 

H. Li et al.,  
J. Am. Chem. Soc. 

(2012)13 
C60 4b 8.7 40 1.610-5 25 1.6×10-3 457 

14 
G. Giri et al.,  

Nature (2011)14 
Small mol.,  

TIPS-pentacene 
4c 1000 50 6.2510-4 20 62.5×10-3 125 

15 

H. Iino et al.,  
Nat. Commun. 

(2015)15 

Small mol.,  
Ph-BTBT-C10 

3b 500 100 10-3 10 0.1 200 

16 
H.-R. Tseng et al.,  

Adv. Mater. (2014)16 
Conj. polymer,  

PCDTPT 
1c 1000 80 1.5310-3 10 0.12 153 

17 
C. Luo et al.,  

Nano Lett. (2014)17 
Conj. polymer,  

PCDTPT 
4c 800 80 1.210-3 10 0.1 150 

For the analysis of FET mobilities and the corresponding mobility reliability factors in some of these 
papers, see Refs. [18-21].  
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