Supporting Information

Development point-of-care based lateral flow biosensor for the rapid

detection of exosomes of subarachnoid hemorrhage patients

Mengyue Wang^{1,2#}, Yanjiao Wang^{4#}, Chengcheng Wang², Qingbin Ni⁵, Jingyi Sun³,

Baoliang Sun²*, Ying Wang²*

¹ School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China

² The Second Affiliated Hospital; Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China

³ Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China

⁴ School of radiology; Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China

⁵ Postdoctoral Workstation, Taian Central Hospital, Taian, Shandong, 271000, China

	iiiiii iiiiiiiqu	to for these detection		
Detection	Disease	Target protein	LOD	Ref.
colorimetry	Breast cancer	CD63	5.2×10^5 particles/µL	1
Nanoplasmo nics	Lung cancer	EGFR	9.72×10 ⁹ exosomes/mL	2
LFIA	The human melanoma cell line	MICA、CD63	5×10 ¹⁰ exosomes/mL	3
Fuorescence	ovarian cancer	EpCAM	7.5×10 ⁵ particles/mL	4
SPR	Lung cancer	EGFR	2×10^{10} exosomes/mL	5
Electrochem ical	HepG2 cell	CD63	1×10 ⁶ particles/mL	6
Electrochem ical impedimetri c	HEK293 cells	CD81	1.9×10 ⁵ particles/mL	7
SERS	SAH	CD9、CD81	0.7×10^4 particles/mL	This work

Table S1. Typical techniques for exosomes detection

Fig.S1. Raman intensitiy of different types of exosome samples were detected by SERS probe at 1090 cm⁻¹.

Fig.S2. Western blot analysis of isolated exosomes in the sham and SAH groups at different time points.

Fig.S3. Different combinations of capture and detection antibodies for LFA.

[1]Xia, Yaokun et al. "A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes." Biosensors & bioelectronics vol. 92 (2017): 8-15. doi:10.1016/j.bios.2017.01.063

[2]Zeng, Xie et al. "Plasmonic Interferometer Array Biochip as a New Mobile Medical Device for Cancer Detection." IEEE journal of selected topics in quantum electronics : a publication of the IEEE Lasers and Electro-optics Society vol. 25,1 (2019): 7201707. doi:10.1109/JSTQE.2018.2865418

[3]López-Cobo, Sheila et al. "Immunoassays for scarce tumour-antigens in exosomes: detection of the human NKG2D-Ligand, MICA, in tetraspanin-containing nanovesicles from melanoma." Journal of nanobiotechnology vol. 16,1 47. 2 May. 2018, doi:10.1186/s12951-018-0372-z

[4]Zhao, Zheng et al. "A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis." Lab on a chip vol. 16,3 (2016): 489-96. doi:10.1039/c5lc01117e

[5]Liu, Chang et al. "Sensitive Detection of Exosomal Proteins via a Compact SurfacePlasmon Resonance Biosensor for Cancer Diagnosis." ACS sensors vol. 3,8 (2018):1471-1479. doi:10.1021/acssensors.8b00230

[6]Zhou, Qing et al. "Development of an aptasensor for electrochemical detection of exosomes." Methods (San Diego, Calif.) vol. 97 (2016): 88-93.doi:10.1016/j.ymeth.2015.10.012

[7]Li, Qian et al. "Concentration-Normalized Electroanalytical Assaying of Exosomal Markers." Analytical chemistry vol. 89,5 (2017): 3184-3190.
doi:10.1021/acs.analchem.6b05037