Supporting Information

Multiple-resonant nitrogen embedded nanographenes with high photoluminesence efficiency and high colour purity

Hao Luo⁺, Jinbei Wei⁺, Minqiang Mai⁺, Xuan Zeng, Weifeng Zhang, Xuyang Wei, Dongdong Zhang^{*}, Duan Lian and Gui Yu^{*}

Table of Contents

General ProceduresS3
Theorectical Calculation ResultsS4
Synthesis ProceduresSe
Mass SpectraS9
NMR of New CompoundsS10
X-ray CrystallographyS18
Thermogravimetric and Electrochemical AnalysesS19
Photophysical PropertiesS19
Device Fabrication and CharacterizationS24
ReferencesS26
Cartesian Coordinates

General Procedures

All reagents were purchased from InnoChem Co. (Beijing, China) or Energy Chemicals Co. and used directly without further purification. Unless otherwise mentioned, all the reactions were operated under nitrogen atmosphere and corresponding products were purified through column chromatography. The 1 H/ 13 C NMR spectra were recorded on Bruker Fourier 300 spectrometer and Bruker AVANCE III 400 spectrometer at 298 K. Chemical shifts are reported as δ : values (in ppm) with tetramethylsilane (TMS) as the internal standard. HR-MALDI-TOF mass spectra were collected by an Autoflex III (Bruker Daltonics Inc.) MALDI-TOF spectrometer.

Theoretical Calculation: Calculations were carried out as implemented in Gaussian 16 program. The molecular structures were optimized by dispersion corrected denisty functional theory (DFT-D3) at B3LYP-D3/6-31G(d,p) level. ^[1-4] The solvation model based on density (SMD) implicit solvent model was used to describe the solvent effect of toluene. The molecular geometries at the first excited state (S₁) were optimized at the B3LYP-D3/6-31G(d,p) level with the time-dependent density functional theory (TD-DFT) method. Vibrational frequency analysis was carried out for these optimized structures with the same calculation method to obtain the Hessian of the first excited state and vibrational coordinates. The vibration-resolved emission spectra were given by using the Franck-Condon-Herzberg-Teller method^[5], broadening with a half width at half-maximum of 300 cm⁻¹.

Electrochemical Analysis: Electrochemical measurements were carried out on a CHI660c electrochemical workstation with a threeelectrode-cell structure with glassy carbon stick electrode as working electrode, platinum wire as auxiliary electrode, and Ag+/Ag electrode as reference electrode. The circular voltammetry (CV) curves were measured in dichloromethane (for oxidative potentials) or tetrahydrofuran (for reductive potentials) containing 0.1 M tetrabutylammonium hexylfluorophosphate as supporting electrolyte standardized against ferrocene/ferrocenium with a scan rate of 100 mV/s.

X-ray Crystallography: Diffraction data were collected at 293 K on a Rigaku Saturn 724 CCD diffract meter with graphite monochromated Mo-K α radiation. The crystallography data was deposited in the Cambridge Crystallographic Data Centre (CCDC) and the CCDC number for the structure was offered.

Thermogravimetric Analysis: Thermogravimetric analysis (TGA) was performed on a PerkinElmer series 7 thermal analysis system under the nitrogen atmosphere with a heating rate of 10°C/min, scanning from 50-700 °C.

Photophysical Property Measurement: UV-vis absorption spectra were measured on a HITACHI UH4150 spectrophotometer. Emission spectra were measured on an Edinburgh FS5 fluorimeter. An Edinburgh FLS980 fluorimeter was employed to record the PL decay curves. The absolute quantum yields of solutions were determined by using a Hiroba FluoroMax+ fluorimeter with an integrating sphere system. The phosphorescent spectra were measured in toluene on an Edinburgh Instruments LP920-KS fluorescence spectraphotometer at 77 K cooled by liquid nitrogen with a delay of 5 ms using the Time-Correlated Single Photon Counting (TCSPC) method with a pulse laser (Vibrant 355II).

Theoretical Calculation Results

Table S1 Summary of TD-DFT calculation at B3LYP-D3/6-31G(d,p) level for ICz, ICz-2 and ICz-3 at the optimized S_0 , S_1 and T_1 structures in toluene

Compound	Optimized Structure	Transition	Wavelength [nm]	Energy [eV]	Oscillator Strength
	c	S ₀ -S ₁	340.41	3.6433	0.1053
ICz	S ₀	S ₀ -T ₁	414.47	2.9914	0
	S ₁	S_1-S_0	377.25	3.2866	0.0291
ICz-2	c	S ₀ -S ₁	433.84	2.8578	0.4630
	S ₀	S ₀ -T ₁	537.21	2.3079	0
	S ₁	S_1-S_0	463.61	2.6743	0.7105
	c	S ₀ -S ₁	499.97	2.4798	0.5273
ICz-3	S ₀	S ₀ -T ₁	625.01	1.9837	0
	S ₁	S_1-S_0	529.74	2.3405	0.6202

 Table S2
 Summary of Franck-Condon analysis at B3LYP-D3/6-31G(d,p) level for ICz, ICz-2 and ICz-3 in toluene

Compound	Transition No.	Transition Mode	Frequency [cm ⁻¹]	Relative Frequency [cm ⁻¹]	Intensity	Dipole Strength
	1	70 ¹ 14 ¹	24891.5319	-2161.8881	1.590	0.004058
	2	70 ¹ 4 ¹	25256.3194	-1791.1006	2.065	0.004971
	3	70 ¹	25411.2913	-1642.1287	3.376	0.007933
	4	14 ²	26013.9012	-1039.5188	1.944	0.004160
	5	26 ¹	26295.8195	-757.6005	2.270	0.004651
ICz	6	14 ¹ 4 ¹	26378.6888	-674.7312	5.078	0.01028
	7	14 ¹	26533.6606	-519.7594	8.656	0.01711
	8	10 ¹	26652.0293	-400.3907	2.384	0.004628
	9	4 ²	26743.2763	-309.9437	4.433	0.008491
	10	4 ¹	26899.4481	-153.9719	12.43	0.02327
	11	0	27053.4200	0	20.47	0.03745
	1	2 ¹ 1 ⁵	21299.9385	-63.1404	65.90	0.1255
_	2	2 ¹ 1 ⁴	21310.3327	-52.7462	87.13	0.1656
	3	2 ¹ 1 ³	21320.7269	-42.3520	87.40	0.1658
ICz-2	4	1 ⁴	21321.5023	-41.5766	60.54	0.1148
	5	2 ¹ 1 ²	21331.1210	-31.9579	62.63	0.1185
	6	1 ³	21331.8964	-31.1825	63.05	0.1193
	7	0	21363.0789	0	4.999	0.009406
	1	5 ¹ 1 ²	18444.2507	-52.8596	60.48	0.1366
	2	5 ¹ 1 ¹	18455.8606	-41.2479	85.46	0.1926
	3	1 ³	18462.2750	-34.8353	163.1	0.3670
ICz-3	4	5 ¹	18467.4742	-29.6361	54.95	0.1234
	5	1 ²	18473.8868	-23.2235	373.8	0.8386
	6	1 ¹	18485.4985	-11.6118	513.2	1.149
	7	0	18497.1103	0	321.3	0.7171

Fig. S1 The potential energy surfaces for ground and excited states (S_0 and S_1). The energy gaps were calculated at B3LYP-D3/6-31G(d,p) level for ICz (left), ICz-2 (middle) and ICz-3 (right).

Synthesis Procedures

Scheme S1 Synthetic procedure of ICz-2 and ICz-3.

Synthesis of 5'-(tert-butyl)-2'-iodo-1,1':3',1"-terphenyl: The synthetic route was referred to the reported literature.[6]

Synthesis of 1: 2,6-dibromo-4-(*tert*-butyl)aniline (4.50 g, 14.66 mmol, 1.0 equiv.), (2-chlorophenyl)boronic acid (9.17 g, 58.63 mmol, 4.0 equiv.), potassium carbonate (K_2CO_3) (16.21 g, 117.28 mmol, 8.0 equiv.) were added with water (20 mL) and 1,4-dioxane (100 mL) into a two-neck round-bottom flask. Subsequently, tetrakis(triphenylphosphine)palladium(0) (Pd(PPh_3)_4) (855 mg, 0.74 mmol, 5% equiv.) was added. The mixture was degassed with nitrogen for three times, then heated to reflux and stirred overnight. After cooling to room temperature, the reaction mixture was extracted with dichloromethane and water, and the combined organic layer was condensed by rotary evaporation. The crude product was further purified by column chromatography with a mixed eluent of

dichloromethane/petroleum ether (2/3) to afford viscous colorless oil (4.65 g, 86%). ¹H NMR (400 MHz, DMSO- d_6) δ : 7.58 (ddd, J = 7.5, 3.4, 1.6 Hz, 2H), 7.41 (dt, J = 6.3, 2.6 Hz, 6H), 6.98 (d, J = 1.2 Hz, 2H), 3.75 (d, J = 9.1 Hz, 2H), 1.25 (s, 9H). ¹³C NMR (75 MHz, DMSO- d_6) δ : 140.00, 139.87, 138.81, 138.73, 138.66, 138.63, 133.54, 133.46, 132.65, 132.62, 130.31, 130.26, 129.72, 128.07, 128.04, 127.22, 127.15, 124.57, 124.42, 34.03, 31.86. HR-MS (MALDI-TOF): calcd. for C₂₂H₂₂Cl₂N [M]+ 370.1124; Found: 370.1123.

Synthesis of 2: Compound 1 (4.50 g, 12.15 mmol, 1.0 equiv.), SPhos (2.00 g, 4.86 mmol, 40% equiv.), cesium carbonate (Cs₂CO₃) (39.59 g, 121.50 mmol, 10.0 equiv.) were added with xylene (100 mL) into a two-neck round-bottom flask. Subsequently, tris(dibenzylideneacetone)dipalladium (0) (Pd₂(dba)₃) (1.11 g, 1.22 mmol, 10% equiv.) was added. The mixture was degassed with nitrogen for three times, then heated to reflux and stirred for 48 hours. After cooling to room temperature, the reaction mixture was extracted with dichloromethane and water, and the combined organic layer was condensed by rotary evaporation. The crude product was further purified by column chromatography with petroleum ether as eluent to afford a white powder (2.97 g, 82%). ¹H NMR (300 MHz, DMSO-*d*₆) δ : 8.40 – 8.22 (m, 6H), 7.60 (t, *J* = 7.7 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 2H), 1.54 (s, 9H). ¹³C NMR (75 MHz, Chloroform-*d*) δ : 146.89, 142.73, 139.15, 130.35, 126.49, 123.02, 121.54, 117.84, 116.83, 112.21, 35.97, 32.85. HR-MS (MALDI-TOF): calcd. for C₂₂H₁₉N [M]+ 297.1512; Found: 297.1512.

Synthesis of 3: Compound 2 (1.00 g, 3.36 mmol, 1.0 equiv.) was added with chloroform (15 mL) and glacial acetic acid (3 mL) into a two-neck round-bottom flask. The mixture was cooled to 0°C in an ice/water bath. Subsequently, N-bromosuccinimide (NBS) (1.32 g, 7.40 mmol, 2.2 equiv.) was added in several portions. After the completion of addition of NBS, the mixture was warmed to room temperature and stirred for 6 hours. The reaction mixture was poured into ethanol (100 mL), added with saturate sodium sulfite solution (100 mL). The precipitate was collected through filtration and washed with water/ethanol to obtain white powder (1.49 g, 97%). ¹H NMR (300 MHz, Chloroform-*d*) δ : 8.20 (s, 2H), 8.09 (s, 2H), 7.58 (s, 4H), 1.55 (s, 9H). ¹³C NMR (75 MHz, Chloroform-*d*) δ : 147.70, 137.43, 131.86, 129.24, 126.09, 117.80, 116.97, 114.81, 113.20, 36.01, 32.73. HR-MS (MALDI-TOF): calcd. for C₂₂H₁₇Br₂N [M]+ 452.9722; Found: 452.9722.

Synthesis of 4: Compound 3 (1.40 g, 3.08 mmol, 1.0 equiv.), bis(pinacolato)diboron (B₂pin₂)(2.35 g, 9.23 mmol, 3.0 equiv.), potassium acetate (KOAc) (3.02 g, 30.80 mmol, 10.0 equiv.) were added with 1,4-dioxane (50 mL) into a two-neck round-bottom flask. Subsequently, [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (Pd(dppf)₂Cl₂) (227 mg, 0.31 mmol, 10% equiv.) was added. The mixture was degassed with nitrogen for three times, then heated to 105°C and stirred overnight. After cooling to room temperature, the reaction mixture was extracted with dichloromethane and water, and the combined organic layer was condensed by rotary evaporation. The crude product was further purified by column chromatography a mixed eluent of dichloromethane/petroleum ether (1/2) to afford a greyish powder (1.44 g, 85%). ¹H NMR (300 MHz, DMSO- d_6) δ : 8.64 (s, 2H), 8.44 (s, 2H), 8.28 (d, *J* = 8.0 Hz, 2H), 7.89 (d, *J* = 8.0 Hz, 2H), 1.52 (s, 9H), 1.37 (s, 24H). ¹³C NMR (75 MHz, Chloroform-d) δ : 147.45, 142.99, 140.96, 133.19, 130.16, 129.92, 117.90, 116.98, 111.90, 83.87, 35.93, 32.75, 24.99. HR-MS (MALDI-TOF): calcd. for C₃₄H₄₁B₂NO₄ [M]+ 549.3228; Found: 549.3212.

Synthesis of 5: Compound 4 (1.20 g, 2.18 mmol, 1.0 equiv.), 5'-(tert-butyl)-2'-iodo-1,1':3',1"-terphenyl (2.70 g, 6.55 mmol, 3.0 equiv.), K_2CO_3 (2.41 g, 17.44 mmol, 8.0 equiv.) were added with water (10 mL) and 1,4-dioxane (50 mL) into a two-neck round-bottom flask. Subsequently, Pd(PPh₃)₄ (126 mg, 0.11 mmol, 5% equiv.) was added. The mixture was degassed with nitrogen for three times, then heated to reflux and stirred overnight. After cooling to room temperature, the reaction mixture was extracted with dichloromethane and water, and the combined organic layer was condensed by rotary evaporation. The crude product was further purified by column chromatography with a mixed eluent of dichloromethane/petroleum ether (1/4) to afford white powder (1.52 g, 80%). ¹H NMR (300 MHz, DMSO-*d*₆) δ : 7.93 (s, 2H), 7.79 (d, *J* = 8.4 Hz, 2H), 7.66 (s, 2H), 7.43 (s, 4H), 7.22 – 6.95 (m, 22H), 1.41 (d, *J* = 4.8 Hz, 27H). ¹³C NMR (101 MHz, Methylene Chloride-*d*₂) δ : 150.20, 146.73, 142.61, 141.90, 136.99, 136.44, 133.38, 130.34, 130.01, 129.22, 127.48, 126.75, 126.02, 125.97, 117.65, 116.39, 110.76, 35.70, 34.61, 32.40, 31.17. HR-MS (MALDI-TOF): calcd. for C₆₆H₅₉N [M]+ 865.4642; Found: 865.4642.

Synthesis of ICz-2: Compound 5 (500 mg, 0.58 mmol, 1.0 equiv.) was dissolved in 50 mL extra dry dichloromethane and added into a three-neck round-bottom flask, and iron(III) chloride (FeCl₃) (1.87 g, 11.54 mmol, 20.0 equiv.) was suspended in 5 mL nitromethane and placed in separating funnel. The mixture was degassed with nitrogen for 5 minutes. Then FeCl₃ suspension was added dropwise in an ice/water bath for 15 minutes. After the completion of addition of FeCl₃, the ice/water bath was removed, and the mixture was warmed to room temperature and stirred for 1 hour. 5 mL methanol were added to quench the reaction. The mixture was extracted with dichloromethane and water, and the combined organic layer was condensed by rotary evaporation. The crude product was further purified by column chromatography with a mixed eluent of dichloromethane/petroleum ether (1/4) to afford a yellow solid (380 mg, 76%). ¹H NMR (500 MHz, CD₂Cl₂CD₂Cl₂) δ : 9.88 (dd, *J* = 7.8, 1.8 Hz, 1H), 9.66 (s, 1H), 9.14 (d, *J* = 8.2 Hz, 2H), 9.09 – 8.98 (m, 4H), 8.94 (s, 2H), 8.93 – 8.84 (m, 5H), 7.96 (dd, *J* = 8.2, 6.8 Hz, 2H), 7.93 – 7.78 (m, 7H), 1.73 (s, 18H), 1.65 (s, 9H). Due to the low solubility in CD₂Cl₂CD₂Cl₂ and other solvents, resolved ¹³C NMR of ICz-2 was not obtained. HR-MS (MALDI-TOF): calcd. for C₆₆H₅₁N [M]+ 857.4016; Found: 857.4016. Mean error: 0.0 ppm. Anal. Calcd for C₆₆H₅₁N: C,92.38; H, 5.99; N, 1.63. Found: C, 92.00; H, 6.07; N, 1.55.

Syntheses of 6: The synthetic routes were referred to the reported literatures.[7]

Synthesis of 7: Compound 6 (0.99 g, 2.07 mmol, 1.0 equiv.), B_2pin_2 (2.61 g, 10.32 mmol, 5.0 equiv.), KOAc (3.04 g, 30.98 mmol, 10.0 equiv.) were added with 1,4-dioxane (80 mL) into a two-neck round-bottom flask. Subsequently, $Pd(dppf)_2Cl_2$ (152 mg, 0.20 mmol, 10% equiv.) was added. The mixture was degassed with nitrogen for three times, then heated to $105^{\circ}C$ and stirred overnight. After cooling to room temperature, the reaction mixture was extracted with dichloromethane and water, and the combined organic layer was condensed by rotary evaporation. The crude product was further purified by column chromatography with a mixed eluent of dichloromethane/petroleum ether (1/1) to afford a white powder (1.06 g, 83%). ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.64 (s, 2H), 8.56 (s, 2H), 8.01 (d, *J* = 8.0 Hz, 2H), 7.92 (d, *J* = 8.1 Hz, 2H), 1.42 (d, *J* = 6.5 Hz, 36H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 146.29, 140.74, 133.38, 130.18, 129.86, 126.47, 118.37, 111.85, 83.84, 83.74, 25.02, 24.98. HR-MS (MALDI-TOF): calcd. for C₃₆H₄₄B₃NO₆ [M]+ 619.3460; Found: 619.3443.

Synthesis of 8: Compound 7 (1.00 g, 1.62 mmol, 1.0 equiv.), 5'-(tert-butyl)-2'-iodo-1,1':3',1"-terphenyl (2.66 g, 6.46 mmol, 4.0 equiv.), K_2CO_3 (2.39 g, 16.20 mmol, 10.0 equiv.) were added with water (10 mL) and 1,4-dioxane (50 mL) into a two-neck round-bottom flask. Subsequently, Pd(PPh₃)₄ (94 mg, 0.08 mmol, 5% equiv.) was added. The mixture was degassed with nitrogen for three times, then heated to reflux and stirred overnight. After cooling to room temperature, the reaction mixture was extracted with dichloromethane and water, and the combined organic layer was condensed by rotary evaporation. The crude product was further purified by column chromatography with a mixed eluent of dichloromethane/petroleum ether (1/3) to afford white powder (1.44 g, 81%). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 7.68 (d, *J* = 8.3 Hz, 2H), 7.45 – 7.34 (m, 8H), 7.30 (s, 2H), 7.06 (dddd, *J* = 16.7, 12.7, 8.0, 4.0 Hz, 30H), 6.93 (dd, *J* = 8.3, 1.7 Hz, 2H), 1.45 – 1.37 (m, 27H). ¹³C NMR (75 MHz, Methylene Chloride-*d*₂) δ : 150.14, 149.91, 142.67, 142.55, 142.45, 142.21, 141.88, 137.51, 136.58, 136.28, 134.49, 133.10, 130.21, 129.94, 128.87, 127.49, 127.36, 126.73, 126.68, 126.27, 126.02, 125.89, 122.85, 116.96, 110.55, 34.60, 31.16. HR-MS (MALDI-TOF): calcd. for C₈₄H₇₁N [M]+ 1093.5581; Found: 1093.5568.

Synthesis of ICz-3: Compound 8 (500 mg, 0.46 mmol, 1.0 equiv.) was dissolved in 50 mL extra dry dichloromethane and added into a three-neck round-bottom flask, and FeCl₃ (2.23 g, 13.70 mmol, 30.0 equiv.) was suspended in 5 mL nitromethane and placed in separating funnel. The mixture was degassed with nitrogen for 5 minutes. The FeCl₃ suspension was added dropwise in an ice/water bath for 15 minutes. After the completion of addition of FeCl₃, the ice/water bath was removed, and the mixture was warmed to room temperature and stirred for 1 hour. 5 mL methanol were added to quench the reaction. The mixture was extracted with dichloromethane and water, and the combined organic layer was condensed by rotary evaporation. The crude product was further purified by column chromatography with a mixed eluent of dichloromethane/petroleum ether (1/4) to afford an orange solid (340 mg, 68%). ICz-3 should be comprised of diastereomers as it structurally features [6]helicene segments. We herein do not discuss the behaviour of each diastereomer as we investigate the collective photophysical behaviour. ¹H NMR (500 MHz, CD₂Cl₂CD₂Cl₂) δ : 9.94 (s, 1H), 9.29 – 9.17 (m, 4H), 9.17 – 9.05 (m, 5H), 8.94 (d, *J* = 8.2 Hz, 3H), 8.85 (d, *J* = 8.1 Hz, 2H), 8.77 (d, *J* = 8.2 Hz, 2H), 8.36 (d, *J* = 8.0 Hz, 1H), 8.05 – 7.80 (m, 6H), 7.48 (dt, *J* = 20.5, 7.4 Hz, 4H), 6.60 (t, *J* = 7.5 Hz, 2H), 6.52 (t, *J* = 7.4 Hz, 2H), 1.87 (s, 9H), 1.84 (s, 18H). Due to the low solubility in CD₂Cl₂CD₂Cl₂CD₂Cl₂ and common solvents, ¹³C NMR of ICz-3 was not recorded. HR-MS (MALDI-TOF): calcd. for C₈₄H₅₉N [M]+ 1081.4642; Found: 1081.4639. Mean error: -0.2 ppm. Anal. Calcd for C₈₄H₅₉N: C,93.21; H, 5.49; N, 1.29. Found: C, 93.03; H, 5.29; N, 1.17.

Synthesis of dibenzo[e,/]pyrene (DBP): The synthetic route was referred to the reported literature.^[8,9]

Mass Spectra

MALDI,ICZ-2,20240118

Fig. S2 The HR-MALDI-TOF mass spectra of ICz-2

MALDI,ICZ-3,20240118

Fig. S3 The HR-MALDI-TOF mass spectra of ICz-3.

S10

Fig. S7 ¹³C NMR spectrum of compound 2 (75MHz, DMSO-d₆).

Fig. S11 ¹³C NMR spectrum of compound 4 (75MHz, Chloroform-d).

Fig. S13 ¹³C NMR spectrum of compound 5 (101 MHz, Methylene Chloride-d₂).

Fig. S15 ¹³C NMR spectrum of compound 7 (101MHz, Chloroform-d).

Fig. S17 ¹³C NMR spectrum of compound 8 (75MHz, Methylene Chloride-*d*₂).

Fig. S19 ¹H NMR spectrum of ICz-3 (500MHz, CD₂Cl₂CD₂Cl₂, measured in 493 K).

X-ray Crystallography

Single crystal of ICz-2 was obtained by slow evaporation of toluene/methanol solutions under ambient conditions. The crystal data are as follows:

Complete Data:

	Crystal Data for ICz-2
Cell	a = 17.0229(6) Å; b = 18.2490(7) Å; c = 18.5767(7) Å; α = 63.138(4)°, β = 70.133(3)°, γ = 77.364(3)°
Temperature	170 K
Volume	4827.1(4)
Space Group	P -1
Hall Group	-P 1
Moiety Formula	2(C ₆₆ H ₅₁ N) 1(C ₇ H ₈)
Sum Formula	C ₁₃₉ H ₁₁₀ N ₂
M _r	1808.28
Z	2
D _x	1.244 g/cm ³
M _u	0.535 mm ⁻¹
F000	1916.0
h, k, l _{max}	20, 21, 22
N _{ref}	16953
T_{min}, T_{max}	0.754, 1.000
Data Completeness	0.994
θ_{max}	66.600
R (reflections)	0.0749 (12258)
wR2 (reflections)	0.2189 (16953)
S	1.072
N _{par}	1361

Fig. S21 The CV curves of ICz-2 and ICz-3. The LUMO energy levels can be calculated by the reduction curves, with 3.00 eV for ICz-2 and 3.21 eV for ICz-3. Combined with the energy gap determined by the onset of absorption spectra, being 2.71 eV for ICz-2 and 2.36 eV for ICz-3, the HOMO energy levels can be obtained as 5.71 eV and 5.51 eV, respectively.

Photophysical Properties

Table S3 The fluorescence properties of some all-carbon and N-doped NGs

Compound	λ _{em} [nm]	Solvent	Φ_{PL} (%)	EQE (%)	Reference
COR	417	DCM	7	-	[10]
Q[6]H	527	DCM	3	-	[11]
HBC	487	DCM	3	-	[12]
Azacornnulene	490	DCM	24	-	[13]
DBOV	594	THF	80	-	[14]
DBOV-C12	617	Toluene	79	-	[15]
FM-C4	539	DCM	12.9	-	[16]
NS-Octulene-2	464, 495	Toluene	-	-	[17]
Diazapentabenzocorannulenium	491 (Water)/511	Water/DCM	12 (Water)/6 (DCM)	-	[18]
	(DCM)				
Pyrrole-fused Thiepine	459, 485	DCM	29	-	[19]
ICz-2	454	Toluene	92	3.8	This Work
ICz-3	516	Toluene	93	12.3	This Work

Fig. S22 The emission spectra of a) ICz-2 and b) ICz-3 measured in grinded powder at 298 K.

Fig. S23 Emission spectra of ICz simulated by Franck-Condon analysis (B3LYP-D3/6-31G(d,p)) on the S_1 - S_0 transition in toluene broadening with a half width at half-maximum of 300 cm⁻¹. Dipole strength of each transition is marked by red dots.

Fig. S24 The emission spectra of ICz-2 and ICz-3 compared with ICz and DBP measure in 10⁻⁵ M toluene solution at 298 K.

Fig. S25 CIE graph of ICz-2 and ICz-3 based on emission spectra in toluene solutions.

Fig. S26 The emission spectra of a) ICz-2 and b) ICz-3 measured in multiple solvents with different polarity, including n-hexane (Hex), ethyl acetate (EA), toluene (Tol), tetrahydrofuran (THF), dichloromethane (DCM) and *N*,*N*-dimethylformamide (DMF).

Compound	IC	z-2	ICz	-3
Calvert	$\lambda_{ m em}{}^{a}$	FWHM	$\lambda_{ m em}{}^a$	FWHM
Solvent	[nm]	[nm]	[nm]	[nm]
Hex	448	20	509	26
EA	453	20	513	23
Tol	454	18	516	23
THF	452	18	516	25
DCM	453	18	518	29
DMF	454	21	520	29

Table S4 Summary of emission spectra data in different polar solvents of ICz-2 and ICz-3

^a Peak wavelength of emission spectra measured in 10⁻⁵ M solutions at 298 K.

Fig. S27 The phosphorescent emission spectrum of ICz-2 and ICz-3 in toluene solutions at 77 K, in comparison with their corresponding fluorescent emission spectrum in toluene at room temperature.

Fig. S28 The PL decay curves of ICz, ICz-2 and ICz-3.

Table S5 Summary of emission spectra data of ICz and DBP

Compound	λ _{em} ª [nm]	FWHM [nm]	Ф _{РL} ^b [%]
lCz	384	23	46
DBP	375	35	5

^a Peak wavelength of PL maxima measure in 10⁻⁵ M toluene solution at 298 K. ^b Measured as absolute quantum yield in diluted toluene solution with an integrating sphere system at 298 K.

Fig. S29 a) The absorption and emission spectra of CzBPCN and ICz-2 in toluene solutions with concentrations of 10⁻⁵ M. b) The absorption and emission spectra of 4TCzIPN and ICz-3 in toluene solutions with concentrations of 10⁻⁵ M.

Fig. S30 The emission spectra of ternary TSF films of a) PPF: CzBPCN: ICz-2 and b) mCBCP: 4TCzIPN: ICz-3. The concentrations in blankets are meant for weight fractions.

Fig. S31 The PL decay curves of binary and ternary TSF films. The concentrations in blankets are meant for weight fractions. CzBPCN and 4TCzIPN as sensitizers are added in the portion of 20 wt%.

Table	Table S6 Summary of photophysical data of binary and ternary TSF films.						
Fluorophore	Composition ^a	λ _{em} ^b [nm]	FWHM [nm]	т ^ь [ns]	PLQY [%]		
	PPF: 1 wt%	454	17	2.8	14.6		
ICz-2	PPF: CzBPCN: 1 wt%	454	26	1163.8	32.1		
	PPF: CzBPCN: 2 wt%	453	22	860.6	25.8		
	PPF: CzBPCN: 3 wt%	454	22	620.5	22.2		
	mCBCP: 1 wt%	518	27	2.9	17.7		
ICz-3	mCBCP: 4TCzIPN: 1 wt%	520	32	2591.4	42.3		
	mCBCP: 4TCzIPN: 2 wt%	519	29	1767.0	36.7		
	mCBCP: 4TCzIPN: 3 wt%	519	28	1184.8	26.9		

^a Weight fraction is the portion of fluorophore in each films. TADF material (CzBPCN/4TCzIPN) was added in the portion of 20 wt%. ^b Measured in 298 K. The films were deposited on pre-cleaned quartz flakes. ^c Measured with an integrating sphere in 298 K.

Device Fabrication and Characterization

Before device fabrication, the ITO glass was meticulously cleaned. Then the ITO glass substrate was transferred into the system. All the organic materials for device fabrication were sublimed before use. The device was fabricated in vacuum under the pressure of 5×10⁻⁶ Torr. The organic layers were thermally evaporated at a rate of 1.0 Å s⁻¹. After all the organic layers were deposited, 0.5 nm of LiF and 150 nm of aluminum were evaporated at the organic surface. The EL and luminescence spectra were recorded by a PR650 spectrometer. The electronic properties of the devices were measured by a Keithley 2400 source meter. All the measurements of devices were performed on common lab conditions.

Fig. S32 The molecule structures of organic materials used in device fabrication.

Fig. S33 The EL spectra of a) device B and b) device G with different fluorophore doping concentrations.

Fig. S34 The J-V-L curves of a) device B and b) device G with different fluorophore doping concentrations.

Fig. S35 Experimentally obtained angle-dependent PL emission of PPF: CzBPCN (20 wt %): ICz-2 (1 wt%) (Left) and mCBCP: 4TCzIPN (20 wt%): ICz-3 (1 wt%) (**Right**) films on silica substrate (dots) compared to the simulated curves (lines) with a different ratios of horizontal dipoles (Θ) (violet line for Θ = 100% (fully horizontal), orange lines for Θ = 69.0% and 69.5% for ICz-2 and ICz-3, respectively, and purple line for Θ = 66.7% (isotropic)).

able S7 Summary of electroluminescent properties of device B and device G							
Device	Fluorophore Doping Concentration [% in wt]	λ _{EL} [nm]	FWHM [nm]	EQE _{max} [%]	CE _{max} [cd/A]	PE _{max} [Im/W]	V _{on} [V]
	1	459	25	3.8	35.0	60.3	3.4
Device B	2	460	25	3.5	34.6	55.5	3.4
	3	460	25	3.2	31.3	51.2	3.3
	1	531	21	12.5	86.7	106.1	3.0
Device G	2	532	21	12.2	82.5	92.3	3.0
	3	532	22	9.5	69.7	77.2	3.0

References:

- [1] A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098-3100.
- [2] C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, 37, 785-789.
- [3] A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
- [4] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [5]. T. Lu, F. Chen, J. Comput. Chem., 2012, 33, 580-592.
- [6] J. Wang, C. Shen, G. Zhang, F. Gan, Y. Ding, H. Qiu, Angew. Chem. Int. Ed. 2022, 61, e202115979.
- [7] C. Zhao, T. Schwartz, B. Stoger, F. J. White, J. Chen, D. Ma, J. Frohlich, P. Kautny, J. Mater. Chem. C 2018, 6, 9914–9924.
- [8] Y. Koga, T. Kaneda, Y. Saito, K. Murakami, K. Itami, Science 2018, 359, 435–439.
- [9] M. Uryu, T. Hiraga, Y. Koga, Y. Saito, K. Murakami, K. Itami, Angew. Chem. Int. Ed. 2020, 59, 6551–6554.
- [10] J. Dey, A. Y. Will, R. A. Agbaria, P. W. Rabideau, A. H. Abdourazak, R. Sygula, I. M. Warner, J. Fluoresc. 1997, 7, 231–236.
- [11] K. Kato, Y. Segawa, L. T. Scott, K. Itami, Angew. Chem. Int. Ed. 2018, 57, 1337–1341.
- [12] P. Rietsch, J. Soyka, S. Brulls, J. Er, K. Hoffmann, J. Beerhues, B. Sarkar, U. Resch-Genger, S. Eigler, *Chem. Commun.* 2019, 55, 10515–10518
- [13] S. Ito, Y. Tokimaru, K. Nozaki, Angew. Chem. Int. Ed. 2015, 127, 7364–7368.
- [14] E. Jin, Q. Yang, C. W. Ju, Q. Chen, K. Landfester, M. Bonn, K. Mullen, X. Liu, A. Narita, *J. Am. Chem. Soc.* 2021, 143, 10403–10412.
- [15] Q. Chen, S. Thoms, S. Stottinger, D. Schollmeyer, K. Mullen, A. Narita, T. Basche, J. Am. Chem. Soc. 2019, 141, 16439–16449.
- [16] N. Zhang, W. Li, J. Zhu, T. Wang, R. Zhang, K. Chi, Y. Liu, Y. Zhao, X. Lu, Adv. Mater. 2023, 35, e2300094.
- [17] N. Zhang, L. Yang, W. Li, J. Zhu, K. Chi, D. Chang, Y. Qiao, T. Wang, Y. Zhao, X. Lu, Y. Liu, *J. Am. Chem. Soc.* **2022**, *144*, 21521–21529.
- [18] Q. Q. Li, Y. Hamamoto, G. Kwek, B. Xing, Y. Li, S. Ito, Angew. Chem. Int. Ed. 2022, 61, e202112638.
- [19] W. Wang, F. Hanindita, Y. Tanaka, K. Ochiai, H. Sato, Y. Li, T. Yasuda, S. Ito, Angew. Chem. Int. Ed. 2023, 62, e202218176.

Cartesian Coordinates:

C	0.00000100	3.50892800	0.00034300
С	1.24824600	2.84987800	0.00012700
С	1.26348300	1.44783700	-0.00057100
С	0.00000100	0.87789600	-0.00123000
С	-1.26348200	1.44783700	-0.00054300
С	-1.24824500	2.84987700	0.00014700
N	0.00000000	-0.48922400	-0.00141900
С	-1.34176500	-0.89982600	-0.00063600
С	-2.16214000	0.28543900	-0.00007900
С	-1.89496400	-2.17482100	-0.00044900
С	-3.28831400	-2.27900000	0.00041000
С	-4.10508000	-1.14023400	0.00097200
С	-3.54943300	0.14080200	0.00072200
С	1.34176600	-0.89982500	-0.00058700
С	2.16214000	0.28543900	-0.00016800
С	3.54943500	0.14080100	0.00061800
С	4.10507900	-1.14023500	0.00100000
С	3.28831200	-2.27900200	0.00057700
С	1.89496300	-2.17482200	-0.00026300
Н	0.00000000	4.59529900	0.00091900
Н	2.16226200	3.43651800	0.00067600
Н	-2.16226000	3.43651900	0.00074400
Н	-1.26778400	-3.06004300	-0.00087700
Н	-3.74393300	-3.26494300	0.00064200
Н	-5.18477300	-1.25628300	0.00159000
Н	-4.18966000	1.01847500	0.00108700
Н	4.18966100	1.01847400	0.00089700
Н	5.18477200	-1.25628700	0.00162200
Н	3.74393200	-3.26494400	0.00090100
Н	1.26777900	-3.06004100	-0.00061100
		I	1
C	0.00000000	3.53948100	0.00012500
С	1.25574400	2.90040300	0.00007200
С	1.26426900	1.46382600	-0.00009300
С	0.0000000	0.92061600	-0.00019400
С	-1.26426900	1.46382600	-0.00008500
	1		1

ICz (S₁):

ICz (S₀):

С	0.00000000	3.53948100	0.00012500
С	1.25574400	2.90040300	0.00007200
С	1.26426900	1.46382600	-0.00009300
С	0.00000000	0.92061600	-0.00019400
С	-1.26426900	1.46382600	-0.00008500
С	-1.25574300	2.90040300	0.0008000
N	0.00000000	-0.49856500	-0.00023200
С	-1.31367200	-0.90683400	-0.00015900
С	-2.14139600	0.30942500	0.00001000
С	-1.85244300	-2.19615400	-0.00019900
С	-3.23949200	-2.32287700	-0.00002100
С	-4.05490500	-1.16888600	0.00017300
С	-3.52650000	0.12879500	0.00018100
С	1.31367200	-0.90683400	-0.00013800
С	2.14139600	0.30942500	0.0000700
l		1	

С	3.52650000	0.12879500	0.00017100	
С	4.05490500	-1.16888600	0.00019500	
С	3.23949200	-2.32287700	0.00005400	
С	1.85244300	-2.19615400	-0.00012000	
Н	0.0000000	4.62775400	0.00026100	
Н	2.16880500	3.48482800	0.00014600	
Н	-2.16880500	3.48482800	0.00016200	
Н	-1.20474800	-3.06681600	-0.00034200	
Н	-3.69523400	-3.30683200	-0.00003100	
Н	-5.13420500	-1.29287100	0.00030300	
Н	-4.19202000	0.98631100	0.00030500	
Н	4.19202000	0.98631100	0.00026700	
Н	5.13420500	-1.29287100	0.00031800	
Н	3.69523400	-3.30683200	0.00008500	
Н	1.20474800	-3.06681600	-0.00020000	
	C C C C H H H H H H H H H H H H	C 3.52650000 C 4.05490500 C 3.23949200 C 1.85244300 H 0.0000000 H 2.16880500 H -2.16880500 H -1.20474800 H -3.69523400 H -5.13420500 H -4.19202000 H 5.13420500 H 5.13420500 H 5.13420500 H 3.69523400 H 1.20474800	C3.526500000.12879500C4.05490500-1.16888600C3.23949200-2.32287700C1.85244300-2.19615400H0.000000004.62775400H2.168805003.48482800H-2.168805003.48482800H-2.168805003.48482800H-3.69523400-3.06681600H-5.13420500-1.29287100H4.192020000.98631100H5.13420500-1.29287100H3.69523400-3.30683200H1.20474800-3.06681600	C3.526500000.128795000.00017100C4.05490500-1.168886000.00019500C3.23949200-2.322877000.00005400C1.85244300-2.19615400-0.00012000H0.000000004.627754000.00026100H2.168805003.484828000.00014600H-2.168805003.484828000.00016200H-2.168805003.484828000.00016200H-3.69523400-3.06681600-0.00034200H-5.13420500-1.292871000.00030300H4.192020000.986311000.00026700H5.13420500-1.292871000.00031800H5.13420500-1.292871000.00031800H1.20474800-3.06681600-0.00020000

ICz-2 (S₀):

С	-0.00354100	4.13275700	0.09541600
С	1.23293200	3.47302900	-0.11591800
С	1.25983100	2.15180900	-0.58298500
С	-0.00418700	1.62080300	-0.80938400
С	-1.26451800	2.15543400	-0.58771200
С	-1.23772000	3.48256100	-0.12185700
N	-0.00514900	0.27428900	-1.04281900
С	-1.33570000	-0.15519800	-0.95259300
C	-2.17046500	0.99689700	-0.74361800
С	-1.83123000	-1.44263900	-1.00309000
С	-3.19602700	-1.65836200	-0.76633100
С	-4.05567100	-0.54055200	-0.53871300
С	-3.56243400	0.79736600	-0.63671700
С	1.32449100	-0.15894300	-0.94880000
С	2.16254200	0.98997700	-0.73917700
С	3.55350900	0.78778000	-0.63234200
С	4.04364100	-0.55141000	-0.53349400
С	3.18071000	-1.66692800	-0.75877300
С	1.81638900	-1.44773300	-0.99667500
С	0.04463800	5.58783900	0.60173300
С	0.82946900	6.45419100	-0.40734800
С	-1.35472400	6.20378400	0.76649900
С	0.75168200	5.63477200	1.97332100
С	5.40609800	-0.77916300	-0.10656400
C	6.26072300	0.31834600	0.20132700
C	7.50129100	0.07291800	0.79594600
С	7.96174700	-1.21894700	1.06558100
C	7.14659600	-2.28516400	0.69253500
С	5.88645300	-2.10004200	0.10328500

[С	4.51815600	1.88574700	-0.63424600	
	С	5.84091300	1.66928000	-0.17201500	
	С	5.06083100	-3.23995400	-0.29858700	
	С	3.72849900	-3.02363200	-0.73466600	
-	С	4.18859900	3.14473900	-1.17705900	
	С	5.09042400	4.19520200	-1.17302600	
	С	6.37151100	4.00506700	-0.63890700	
	С	6.74051400	2.75581800	-0.16887700	
	С	5.56144000	-4.55974600	-0.28578100	
	С	4.78594900	-5.63551800	-0.67989400	
	С	3.47192600	-5.42105000	-1.11655800	
-	С	2.96139400	-4.13585200	-1.14479700	
	С	-5.41813300	-0.76556300	-0.10997200	
	С	-6.26931000	0.33358200	0.20155000	
	С	-5.84683000	1.68391300	-0.17066000	
	С	-4.52457300	1.89733500	-0.63591000	
	С	-3.74790500	-3.01347200	-0.74527900	
	С	-5.08008100	-3.22697900	-0.30748800	
	С	-5.90152200	-2.08554200	0.09876800	
	С	-6.74316500	2.77307600	-0.16303600	
	С	-6.37147400	4.02231600	-0.63105800	
	С	-5.09130400	4.20962100	-1.16825200	
	С	-4.19300200	3.15620900	-1.17755900	
	С	-2.98508900	-4.12682500	-1.16021700	
	С	-3.49954000	-5.41056700	-1.13464800	
	С	-4.81335000	-5.62229400	-0.69605200	
	С	-5.58478600	-4.54519000	-0.29750600	
	С	-7.16055900	-2.26844200	0.69096400	
	С	-7.97204100	-1.20070000	1.06783100	
	С	-7.50908300	0.09035900	0.79887800	
	С	-9.33358400	-1.39249800	1.75080300	
	С	-9.68217400	-2.87527800	1.95621300	
	С	-9.31008200	-0.70593100	3.13312200	
	С	-10.43692300	-0.75334400	0.88057000	
	С	9.32469400	-1.41317500	1.74504200	
	С	9.30674500	-0.72461000	3.12644200	
	С	9.67016300	-2.89653900	1.95152000	
	С	10.42717100	-0.77798900	0.87080400	
	Н	2.14974600	3.99370400	0.12665800	
	Н	-2.15600000	4.00054900	0.11045500	
	Н	-1.15247500	-2.26971900	-1.15578800	
	Н	1.13534000	-2.27308600	-1.14821900	
	Н	0.35083300	6.43655700	-1.39336100	
	Н	1.86028100	6.10551700	-0.52967700	
	Н	0.86923400	7.49610700	-0.06686600	
	Н	-1.91147700	6.21376500	-0.17754700	

	Н	-1.26003600	7.24135600	1.10566200	
	Н	-1.95408100	5.66838700	1.51113000	
	Н	1.77882100	5.25998800	1.91694000	
	Н	0.21397900	5.02698000	2.70989400	
	Н	0.79336300	6.66527600	2.34690200	
	Н	8.12526300	0.91281900	1.07378400	
	Н	7.48484700	-3.29152300	0.89004100	
	Н	3.22294500	3.27918200	-1.64431900	
	Н	4.81013100	5.15166300	-1.60510700	
	Н	7.08962000	4.82006500	-0.63023500	
	Н	7.75972800	2.60995100	0.16907200	
	Н	6.58500400	-4.74494700	0.01681500	
	Н	5.20254000	-6.63851100	-0.66369400	
	Н	2.85852000	-6.25531000	-1.44447900	
	Н	1.95431000	-3.99005900	-1.51692900	
	Н	-7.76191800	2.62955600	0.17734300	
	Н	-7.08685400	4.83965900	-0.61822800	
	Н	-4.80859000	5.16654200	-1.59761100	
	Н	-3.22847700	3.28803700	-1.64780900	
	Н	-1.97840300	-3.98289700	-1.53423900	
	Н	-2.88939500	-6.24574200	-1.46633500	
	Н	-5.23303000	-6.62403400	-0.68199600	
	Н	-6.60845900	-4.72791600	0.00627500	
	Н	-7.50072000	-3.27430800	0.88781700	
	Н	-8.13022600	0.93144400	1.07949800	
	Н	-8.95008700	-3.38173100	2.59529200	
	Н	-9.74098400	-3.41627800	1.00493300	
	Н	-10.65956100	-2.95906200	2.44414500	
	Н	-8.53476800	-1.14194300	3.77331300	
	Н	-10.27675600	-0.82905600	3.63635300	
	Н	-9.11110200	0.36771800	3.05175000	
	Н	-10.47401100	-1.22049800	-0.11016400	
	Н	-10.27393300	0.32000000	0.73795900	
	Н	-11.41765000	-0.88104300	1.35455300	
	Н	8.53222400	-1.15786300	3.76945600	
	Н	9.11011700	0.34940400	3.04413200	
	Н	10.27455000	-0.84935500	3.62708200	
	Н	8.93872200	-3.40025100	2.59350000	
	Н	10.64878000	-2.98208300	2.43666000	
	Н	9.72478800	-3.43901800	1.00083300	
	Н	10.26656300	0.29559500	0.72727900	
	Н	10.46023300	-1.24652800	-0.11941500	
	Н	11.40890100	-0.90759900	1.34216600	
ICz-2 (S ₁):					
	С	-0.01074500	4.11678800	0.24193700	
	C	1.24091500	3.46608900	0.04329100	

С	1.27472100	2.12394800	-0.38669600	
С	-0.00419900	1.58422600	-0.57235400	
С	-1.28189200	2.12477700	-0.39086100	
С	-1.25446600	3.47436600	0.03846100	
Ν	-0.00407500	0.25207500	-0.80623100	
С	-1.34435600	-0.17630400	-0.78017700	
С	-2.17215100	0.99233100	-0.59074800	
С	-1.83265200	-1.45547800	-0.82702700	
С	-3.22240500	-1.67775000	-0.62545800	
С	-4.08189200	-0.55418900	-0.45172200	
С	-3.58161200	0.79078500	-0.55048500	
С	1.33685600	-0.17835900	-0.78065900	
С	2.16524900	0.98885300	-0.58837600	
С	3.57352400	0.78622200	-0.54781600	
С	4.07198700	-0.55932400	-0.45624700	
С	3.21124200	-1.68254600	-0.63581600	
С	1.82267400	-1.45826800	-0.83624300	
С	0.03508100	5.58047500	0.71665800	
С	0.81611200	6.42645000	-0.31404300	
С	-1.36177800	6.20339900	0.87727100	
С	0.74973800	5.65412400	2.08432700	
С	5.45625800	-0.77634300	-0.11588700	
С	6.33133900	0.32836800	0.10809900	
С	7.61167300	0.09187500	0.61509800	
С	8.09382200	-1.19807400	0.87300700	
С	7.25973700	-2.27023400	0.57883200	
С	5.95529900	-2.09732300	0.07663600	
С	4.52391900	1.87483900	-0.62593900	
С	5.88356600	1.67034500	-0.25357000	
С	5.11143500	-3.24087700	-0.24518500	
С	3.74626200	-3.02735200	-0.60138500	
С	4.15013000	3.13667200	-1.14896000	
С	5.04408200	4.18837800	-1.21278500	
С	6.36317500	4.00775600	-0.76846000	
С	6.77162600	2.76219200	-0.31889900	
С	5.60952600	-4.56233300	-0.22859800	
С	4.80895800	-5.64717700	-0.53425100	
С	3.46290600	-5.43962500	-0.87851100	
С	2.95022500	-4.15862900	-0.91328200	
С	-5.46626500	-0.76808400	-0.11205000	
С	-6.34050200	0.33829100	0.10455600	
С	-5.89052500	1.67815200	-0.26182900	
С	-4.53000800	1.87922800	-0.63514300	
С	-3.75708100	-3.02181100	-0.58368500	
С	-5.12322800	-3.23267700	-0.22698400	
С	-5.96646700	-2.08759300	0.08632000	

С	-6.77544800	2.77214200	-0.32882700	
С	-6.36333300	4.01550500	-0.78126900	
С	-5.04431200	4.19221000	-1.22765400	
С	-4.15332800	3.13854000	-1.16279400	
С	-2.96065600	-4.15492400	-0.88870400	
С	-3.47373300	-5.43509500	-0.84626800	
С	-4.82034400	-5.64021600	-0.50096600	
С	-5.62137500	-4.55434400	-0.20224300	
С	-7.27304500	-2.25705800	0.58636000	
С	-8.10685500	-1.18328200	0.87237800	
С	-7.62238900	0.10529000	0.60885800	
С	-9.51781500	-1.35720600	1.45011500	
С	-9.88117300	-2.83379300	1.67300000	
С	-9.60497700	-0.62720200	2.80760200	
С	-10.54715400	-0.74821300	0.47375900	
С	9.50280400	-1.37678900	1.45446200	
С	9.58553900	-0.65659800	2.81744700	
С	9.86508000	-2.85502300	1.66832200	
С	10.53619500	-0.76145600	0.48641200	
Н	2.15196200	4.00288300	0.26576800	
Н	-2.16987200	4.00358600	0.24978800	
Н	-1.15006200	-2.28485600	-0.94301700	
Н	1.13926400	-2.28591100	-0.96027300	
Н	0.33251400	6.38805100	-1.29695500	
Н	1.84654500	6.07761800	-0.43378200	
Н	0.85296200	7.47480600	0.00653500	
Н	-1.92331700	6.19669900	-0.06365300	
Н	-1.26164400	7.24683600	1.19631200	
Н	-1.95760900	5.68318300	1.63512100	
Н	1.77777000	5.28296000	2.03033700	
Н	0.21713300	5.05813800	2.83402800	
Н	0.78642300	6.69212400	2.43722000	
Н	8.25394500	0.93581100	0.83152700	
Н	7.61354000	-3.27227800	0.76873400	
Н	3.15325700	3.26437200	-1.54674600	
Н	4.73013900	5.14161800	-1.62875500	
Н	7.07536900	4.82659800	-0.81441100	
Н	7.81277000	2.62628300	-0.05012400	
Н	6.65161400	-4.74162600	0.00730100	
Н	5.22354400	-6.65078100	-0.51821000	
Н	2.82612300	-6.28337500	-1.12930500	
Н	1.91570100	-4.02761200	-1.20723800	
Н	-7.81659300	2.64055900	-0.05822500	
Н	-7.07315800	4.83632400	-0.82769700	
Н	-4.72816700	5.14410000	-1.64466700	
Н	-3.15671300	3.26179700	-1.56243900	
	1			

	Н	-1.92603400	-4.02595500	-1.18283800	
	Н	-2.83730700	-6.28063700	-1.09147600	
F	Н	-5.23453700	-6.64382600	-0.47877000	
	Н	-6.66338600	-4.73257200	0.03445900	
F	Н	-7.62789400	-3.25784800	0.78064100	
	Н	-8.26498400	0.95059100	0.81859200	
F	Н	-9.20190600	-3.31825800	2.38343800	
F	Н	-9.86452700	-3.40393600	0.73723000	
F	Н	-10.89413400	-2.90481700	2.08421100	
F	Н	-8.88194200	-1.03915200	3.52066900	
F	Н	-10.60832900	-0.74009700	3.23563400	
F	Н	-9.40400100	0.44466500	2.70911100	
	Н	-10.50592400	-1.24814600	-0.50062500	
F	Н	-10.37243300	0.32009800	0.30917900	
	Н	-11.56233900	-0.86180700	0.87263200	
F	Н	8.85994500	-1.07361100	3.52497100	
	Н	9.38462600	0.41586900	2.72581300	
	Н	10.58739900	-0.77247800	3.24832800	
F	Н	9.18328500	-3.34420300	2.37307800	
	Н	10.87671100	-2.92931900	2.08235300	
F	Н	9.85113200	-3.41866300	0.72858000	
	Н	10.36275700	0.30813000	0.32903500	
F	Н	10.49793900	-1.25410500	-0.49180700	
F	Н	11.54999300	-0.87874900	0.88789300	
):				<u> </u>	
	С	-1.25727800	2.07616200	0.45755300	
F	С	0.01973200	2.74362900	0.49581700	
F	С	1.28490400	2.05345200	0.45517300	
F	С	1.27674300	0.67490500	0.12051500	
F	С	-0.00383300	0.13634900	0.04094700	
	С	-1.27434000	0.69723800	0.12187300	

ICz-3 ((S ₀)
---------	-------------------

С	-1.25727800	2.07616200	0.45755300
С	0.01973200	2.74362900	0.49581700
С	1.28490400	2.05345200	0.45517300
С	1.27674300	0.67490500	0.12051500
С	-0.00383300	0.13634900	0.04094700
С	-1.27434000	0.69723800	0.12187300
С	2.49907500	4.20440200	0.74405900
С	2.47757700	2.79158100	0.84327700
С	-2.43521800	2.83524100	0.84718700
С	-2.43047900	4.24880300	0.74905400
С	-1.18138600	4.93176100	0.42353100
С	0.03221000	4.19396300	0.48494800
С	-3.57117300	2.18880800	1.37533500
С	-4.71348200	2.89692200	1.70216300
С	-4.74453600	4.28480000	1.51093300
С	-3.61356200	4.94833700	1.06186300
С	3.69351400	4.88289700	1.05760300
С	4.81292400	4.19941500	1.50657300
С	4.75672800	2.81261900	1.69797900
С	3.60133900	2.12510400	1.37198500
С	-1.14331000	6.30223900	0.12732300

С	0.05466900	6.99016800	-0.05953200	
С	1.24398700	6.27626800	0.12180100	
С	1.26183200	4.91057900	0.41834900	
Ν	-0.01594500	-1.22006000	-0.10094000	
С	-2.17473800	-0.45199700	-0.13051100	
С	-1.34924500	-1.63131900	-0.15076600	
С	2.15649800	-0.49068500	-0.13160100	
С	1.30990500	-1.65567500	-0.15059200	
С	-3.54708700	-0.63419800	-0.41776300	
С	-4.09603300	-1.95150600	-0.31770800	
С	-3.24957600	-3.09417700	-0.20403300	
С	-1.85811000	-2.91279100	-0.19720000	
С	-6.10665600	-3.39289900	-0.03558400	
С	-5.24765500	-4.57953300	-0.03422800	
С	-3.83915900	-4.43102800	-0.12368300	
С	-4.41690800	0.43710200	-0.88735900	
С	-5.53142900	-2.11149800	-0.26810400	
С	-5.78598500	-5.88237600	0.03508900	
С	-4.97809200	-7.00543500	0.03094500	
С	-3.58703800	-6.85874300	-0.04846200	
С	-3.03615400	-5.59259000	-0.12613900	
С	-6.38963200	-0.98202600	-0.37063400	
С	-7.76226100	-1.13557800	-0.13107400	
С	-8.32980000	-2.37248300	0.16799100	
С	-7.48447000	-3.48536700	0.18932400	
С	0.11096800	8.47995100	-0.42466500	
С	-1.28780900	9.09663300	-0.58293800	
С	0.85644300	9.25055800	0.68602100	
С	0.86779500	8.64789800	-1.75938900	
С	-9.82637700	-2.55277700	0.45983300	
С	-10.60066500	-1.22716400	0.38728600	
С	-10.43475600	-3.52510300	-0.57335300	
С	-10.00111400	-3.13776300	1.87766300	
С	3.52447500	-0.69683900	-0.41940600	
С	4.05058800	-2.02355200	-0.31832400	
С	1.79582700	-2.94558300	-0.19666700	
С	-5.82460200	0.29580800	-0.80053200	
С	-3.88272700	1.58841100	-1.50176400	
С	-4.69653400	2.62332500	-1.92474700	
С	-6.08228500	2.52944900	-1.74411600	
С	-6.63344200	1.37523500	-1.21116800	
С	4.41248200	0.35951900	-0.89107900	
С	5.81711200	0.19571500	-0.80353300	
С	6.36127800	-1.09054000	-0.36848300	
С	5.48289600	-2.20840500	-0.26613100	
С	5.15822200	-4.66744900	-0.02789500	

С	3.75191300	-4.49654500	-0.12033000	
С	3.18471600	-3.15109200	-0.20339100	
С	3.89736300	1.51780700	-1.50802700	
С	4.72831800	2.53839100	-1.93320600	
С	6.11216900	2.42170700	-1.75330800	
С	6.64390900	1.25929900	-1.21776100	
С	5.67489200	-5.97936400	0.04548200	
С	4.84866400	-7.08870800	0.04197500	
С	3.46007000	-6.91962200	-0.04062700	
С	2.93006300	-5.64506200	-0.12196100	
С	7.72497400	-1.26928800	-0.12500800	
С	8.27473500	-2.51839500	0.17956900	
С	7.41559900	-3.61455700	0.20046700	
С	6.03559300	-3.49560600	-0.03037200	
С	9.77912700	-2.63607000	0.46249600	
С	10.56927000	-2.16550000	-0.77740300	
С	10.14164000	-1.74420700	1.66907400	
С	10.20415300	-4.07741700	0.78512700	
Н	-3.53625600	1.11998600	1.54039300	
Н	-5.57831000	2.37623800	2.10130300	
Н	-5.64031000	4.84965600	1.75329500	
Н	-3.63226400	6.03067300	0.99946300	
Н	3.73056500	5.96483300	0.99610800	
Н	5.71850600	4.74830000	1.74913600	
Н	5.61194400	2.27634000	2.09719500	
Н	3.54717400	1.05723300	1.53799700	
Н	-2.07951700	6.83292500	0.02418100	
Н	2.18730000	6.79764500	0.01244600	
Н	-1.18046000	-3.75426300	-0.18337900	
Н	-6.85968400	-6.02067300	0.07260700	
Н	-5.42449200	-7.99438300	0.08069900	
Н	-2.94144800	-7.73223000	-0.05748800	
Н	-1.95902500	-5.50506400	-0.20088100	
Н	-8.39652600	-0.26154300	-0.16972300	
Н	-7.91778400	-4.45115100	0.41387400	
Н	-1.86549600	9.04192200	0.34669800	
Н	-1.86329100	8.60356400	-1.37453600	
Н	-1.19543500	10.15483300	-0.85151500	
Н	0.34290100	9.14418800	1.64832200	
Н	0.90615300	10.31868000	0.44200400	
Н	1.88253600	8.89010700	0.81320300	
Н	0.35876300	8.11139000	-2.56823300	
Н	1.89176800	8.26507200	-1.69696200	
Н	0.92374400	9.70780200	-2.03578500	
Н	-10.54215300	-0.77439100	-0.60900500	
Н	-10.23155900	-0.49884000	1.11819500	

Н	-11.65906500	-1.40695000	0.60606100
Н	-10.32365900	-3.13435400	-1.59123900
Н	-11.50433500	-3.66885300	-0.37804000
Н	-9.95497300	-4.50881000	-0.53900900
Н	-9.57868300	-2.46545700	2.63310800
Н	-9.50641700	-4.10917100	1.98116400
Н	-11.06500000	-3.27911200	2.10356700
Н	1.10365800	-3.77522200	-0.18211100
Н	-2.81341600	1.65422800	-1.65266900
Н	-4.25866100	3.50308800	-2.38613200
Н	-6.73149000	3.34234700	-2.05687900
Н	-7.71265200	1.29438900	-1.15209200
Н	2.82925300	1.60127700	-1.65877900
Н	4.30491300	3.42437200	-2.39619900
Н	6.77487200	3.22263700	-2.06857400
Н	7.72158900	1.15955000	-1.15925400
Н	6.74603500	-6.13546000	0.08526700
Н	5.27864200	-8.08476500	0.09475400
Н	2.80045300	-7.78257100	-0.04921400
Н	1.85469100	-5.54003600	-0.19913500
Н	8.38163700	-0.40909200	-0.16321500
Н	7.82317600	-4.58821200	0.42849800
Н	10.34465100	-1.12462600	-1.03269800
Н	10.33049300	-2.78270200	-1.65099400
Н	11.64786200	-2.23845700	-0.59260500
Н	9.90502400	-0.69132200	1.48353800
Н	11.21494800	-1.81173700	1.88413100
Н	9.59417100	-2.05709100	2.56545400
Н	10.00237400	-4.75906700	-0.04890800
Н	9.69492000	-4.46316800	1.67553100
Н	11.28153400	-4.10772400	0.98188000

ICz-3 (S₁):

С	1.27173400	2.07240300	-0.53341200
С	-0.01453200	2.74027800	-0.55018400
С	-1.29371500	2.05209400	-0.53030400
С	-1.28821200	0.65697600	-0.22478000
С	0.00129600	0.11327700	-0.18420400
С	1.28471600	0.67556600	-0.22891600
С	-2.49728500	4.20652100	-0.79646400
С	-2.47746800	2.78958700	-0.89864700
С	2.44631600	2.82740300	-0.89520800
С	2.44437500	4.24461500	-0.78865800
С	1.19597800	4.92183000	-0.46254200
С	-0.02499400	4.18152000	-0.52448300
С	3.60181500	2.18656800	-1.39768700
С	4.75100700	2.89894500	-1.68967400

С	4.77814300	4.28740600	-1.49671800	
С	3.63224300	4.94590700	-1.07364000	
С	-3.69146400	4.88905900	-1.09267300	
С	-4.82599100	4.21226200	-1.52039600	
С	-4.77854700	2.82398700	-1.70743200	
С	-3.62092200	2.12965700	-1.40557900	
С	1.15639300	6.28941900	-0.15222700	
С	-0.04305100	6.97413700	0.03786100	
С	-1.23710600	6.26549500	-0.15365900	
С	-1.25930200	4.90449000	-0.46356300	
Ν	0.01120200	-1.23049600	-0.02625600	
С	2.16651200	-0.45041200	0.05490300	
С	1.35010700	-1.64326600	0.06497000	
С	-2.15457200	-0.48403800	0.05817700	
С	-1.31909600	-1.66381700	0.07065000	
С	3.54033300	-0.63759400	0.37763800	
С	4.09676200	-1.95875600	0.27095600	
С	3.26230400	-3.10230200	0.12859500	
С	1.85579600	-2.91657600	0.10350400	
С	6.11585000	-3.39236100	0.02953400	
С	5.26282100	-4.57597600	-0.02902300	
С	3.84672300	-4.42722600	0.02988800	
С	4.38286900	0.41998300	0.89187600	
С	5.53047700	-2.11460800	0.26807200	
С	5.80325300	-5.87693200	-0.12203000	
С	4.99737800	-6.99951900	-0.16808300	
С	3.60222200	-6.85403400	-0.11793100	
С	3.04579400	-5.59411300	-0.01910100	
С	6.38259500	-0.98671500	0.43538200	
С	7.76283800	-1.13490500	0.24743900	
С	8.34498800	-2.36650600	-0.05935000	
С	7.50592800	-3.47789300	-0.14237500	
С	-0.09842000	8.45891600	0.41763400	
С	1.29957700	9.07479100	0.58520700	
С	-0.84282400	9.24073700	-0.68647900	
С	-0.85854200	8.61147600	1.75288100	
С	9.85294300	-2.53532800	-0.29393300	
С	10.61968100	-1.21048900	-0.15512600	
С	10.42111400	-3.53333400	0.73770900	
С	10.08681400	-3.08288200	-1.71818400	
С	-3.52359400	-0.69150900	0.38080600	
С	-4.05771200	-2.02253400	0.28453000	
С	-1.80324300	-2.94657800	0.12372400	
С	5.79886000	0.28007600	0.86832900	
С	3.82084000	1.57305600	1.48905800	
С	4.61530800	2.60122700	1.95690500	

С	6.00939900	2.50445300	1.84509600	
С	6.58529200	1.35367900	1.32793500	
С	-4.38646300	0.35775000	0.88354700	
С	-5.79872300	0.19688900	0.85192200	
С	-6.36078100	-1.08293900	0.42437900	
С	-5.48846200	-2.20221200	0.27531400	
С	-5.18191100	-4.65992400	0.00528700	
С	-3.76883900	-4.48995700	0.06821900	
С	-3.20400600	-3.15462900	0.15321600	
С	-3.84614800	1.52186900	1.47777000	
С	-4.65944100	2.54130500	1.93442300	
С	-6.05045200	2.42365700	1.81304500	
С	-6.60476800	1.26020900	1.29944800	
С	-5.70280600	-5.97017700	-0.07535600	
С	-4.88029000	-7.08111400	-0.10497100	
С	-3.48786000	-6.91430500	-0.05055400	
С	-2.95076600	-5.64483900	0.03596100	
С	-7.73123500	-1.25691900	0.22540700	
С	-8.29515200	-2.50405200	-0.07513200	
С	-7.44314700	-3.60119200	-0.13797200	
С	-6.05212400	-3.48859800	0.04616100	
С	-9.80830500	-2.61212600	-0.30772000	
С	-10.55335200	-2.15013800	0.96307500	
С	-10.20642400	-1.70592600	-1.49239200	
С	-10.25121700	-4.04799000	-0.63017000	
Н	3.57342300	1.11913700	-1.57263400	
Н	5.62612200	2.37953200	-2.06853300	
Н	5.67846100	4.85422400	-1.71538100	
Н	3.64799800	6.02816800	-1.00534800	
Н	-3.72247900	5.97141300	-1.02986600	
Н	-5.73255700	4.76586000	-1.74715600	
Н	-5.64393800	2.29059500	-2.08909300	
Н	-3.57541000	1.06211900	-1.57620300	
Н	2.09132400	6.82032200	-0.04348700	
Н	-2.17788500	6.79071800	-0.04464600	
Н	1.18104300	-3.76007200	0.06635000	
Н	6.87780100	-6.01337100	-0.13868800	
Н	5.44462000	-7.98692500	-0.23473200	
Н	2.95863200	-7.72862300	-0.14921200	
Н	1.96684000	-5.51130200	0.03005200	
Н	8.39461800	-0.26259500	0.33313300	
Н	7.94891600	-4.43777100	-0.37246200	
Н	1.87906300	9.03044100	-0.34377700	
Н	1.87373300	8.57389600	1.37274100	
Н	1.20535900	10.12993000	0.86478100	
Н	-0.32891700	9.14308600	-1.64944100	

Н	-0.88981900	10.30628700	-0.43123600]
Н	-1.86953800	8.88392300	-0.81723900	-
Н	-0.35102400	8.06633300	2.55681700	-
Н	-1.88240900	8.22990100	1.68411300	-
Н	-0.91401600	9.66851900	2.03992200	-
Н	10.51879600	-0.78369100	0.84921000	-
Н	10.27963400	-0.46414100	-0.88191900	-
Н	11.68664400	-1.38312800	-0.33423500	-
Н	10.26626400	-3.17045200	1.76017400	-
Н	11.49842100	-3.66851300	0.58331400	-
Н	9.94707100	-4.51703700	0.65665400	-
Н	9.69242700	-2.39264700	-2.47259600	-
Н	9.60064700	-4.05278800	-1.86593500	-
Н	11.15951700	-3.21488900	-1.90435300	-
Н	-1.11369100	-3.77852900	0.09576600	-
Н	2.74610300	1.63688500	1.59213700	
Н	4.15819000	3.47883000	2.40350500	
Н	6.64389100	3.31318600	2.19623800	
Н	7.66628300	1.27412500	1.31896300	
Н	-2.77319400	1.60281100	1.58737000	
Н	-4.21814000	3.42829800	2.37843900	1
Н	-6.69969600	3.22483600	2.15441000	
Н	-7.68431200	1.16295500	1.28380200	
Н	-6.77507900	-6.12297300	-0.09482600	
Н	-5.31264400	-8.07575500	-0.16202100	
Н	-2.83103900	-7.77942000	-0.06876100	
Н	-1.87337200	-5.54519100	0.08915400	
Н	-8.38464800	-0.39647200	0.29622400	1
Н	-7.86081700	-4.57148400	-0.36117300	1
Н	-10.31520800	-1.11302800	1.22124800	1
Н	-10.28881100	-2.77762300	1.82176600	1
Н	-11.63781700	-2.21602300	0.81359000	
Н	-9.95944700	-0.65593000	-1.30427300	1
Н	-11.28656900	-1.76717000	-1.67203600]
Н	-9.69059100	-2.01185000	-2.40966100]
Н	-10.02544900	-4.73887500	0.18996300]
Н	-9.77387600	-4.42709400	-1.54081900]
Н	-11.33465500	-4.07092600	-0.79131600]