Supporting Information

Dual-Anchored Configuration Involving on Pb(NO₃)₂ for Effective and Stable FAPbI₃ Quantum Dot Solar Cells

Meidan Que,^a Shenghui He,^a Lili Gao,^{*b} Boyue Zhang,^a Yabo Wang,^a Jin Chen,^a Bo Li,^a Wei Huang,^c Peng Zhong^{*d}

^a College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China.

^b College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China.

^c College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China.

^d School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China.

* Corresponding Author:

Lili Gao, E-mail: gll0706@xauxt.edu.cn Peng Zhong, E-mail: pengzhong@xidian.edu.cn

Table of Contents

Supplementary Figures

- Figure S1. (a) TEM image and (b) the corresponding size distribution of FAPbI₃ quantum dots.
- **Figure S2.** The UV- visible absorption and steady-state PL spectrum of FAPbI₃ quantum dot solution in hexane.
- Figure S3. XRD pattern of FAPbI₃ quantum dot solution.
- Figure S4. Performance evolutions (*J_{SC}*, *V_{OC}*, *FF*, and PCE) of FAPbI₃ quantum dot solar cells using four kinds of Pb-salts (Control, Pb(NO₃)₂, Pb(OAc)₂, PbI₂, Pb(SCN)₂).
- **Figure S5.** (a) UPS spectra of w/wo Pb(NO₃)₂ posttreatment quantum dot films and (b) the correponding energy band positions for FAPbI₃ quantum dot solar cell.
- Figure S6. Mechanism passivation for FAPbI₃ quantum dot.
- Figure S7. Survey XPS spectra of FAPbI₃ quantum dot films w/wo lead salt post-treatment.
- **Figure S8.** The optimized geometries of single-anchored crystal structure by DFT calculation: (a) O-H and (b) O-C.
- **Figure S9.** The optimized geometries of double-anchored crystal structures by DFT calculation: (a) O-H…O-C, (b) O-H…O-N, (c) O-H…O-H, (d) O-C…O-C.
- Figure S10. (a) and (b) SEM images of FAPbI₃ quantum dot films w/wo Pb(NO₃)₂ post-treatment.
- Figure S11. FTIR spectra of FAPbI₃ quantum dot films w/wo Pb(NO₃)₂ post-treatment.
- **Figure S12.** PL spectra with electron transport layer of FAPbI₃ quantum dot films w/wo Pb(NO₃)₂ post-treatment.

Figure S13. TPV curve of FAPbI₃ quantum dot devices w/wo Pb(NO₃)₂ post-treatment.

- Figure S14. Absorption spectra stabilities of FAPbI₃ quantum dot films w/wo Pb(NO₃)₂ posttreatment.
- Figure S15. The corresponding relative absorption stabilities upon humidity of 20 % and room temperature at 660 nm.
- Figure S16. J_{ph} - V_{eff} curves of the FAPbI₃ quantum dot solar cell w/wo Pb(NO₃)₂

posttreatment.

Figure S17. Mott-Schottky fitting to the C-V data of the FAPbI₃ quantum dot solar cells w/wo Pb(NO₃)₂ post-treatment.

Supplementary Tables

Table S1. The calculated binding energies and interatomic distances in the optimized structures.

Table S2. TRPL paraments of w/wo Pb(NO₃)₂ of FAPbI₃ quantum dot films.

Table S3. TPC paraments of w/wo Pb(NO₃)₂ of FAPbI₃ quantum dot films.

Table S4. TPV paraments of w/wo Pb(NO₃)₂ of FAPbI₃ quantum dot films.

Supplementary References

Fig. S1 (a) TEM image and (b) the corresponding size distribution of $FAPbI_3$ quantum dots.

Fig. S2 The UV- visible absorption and steady-state PL spectrum of $FAPbI_3$ quantum dot solution in hexane.

Fig. S3 XRD pattern of FAPbI₃ quantum dot solution.

The XRD was further applied to explore the possible variations of the crystal structure of FAPbI₃ quantum dot. As shown in **Fig. S3**, the three main diffraction peaks at 13.8°, 28.0° and 42.6° correspond to the typical diffraction peaks of the (100), (200) and (210) lattice planes of FAPbI₃ quantum dots, respectively. This demonstrates the integrity of the crystal structure of the prepared quantum dots.

Fig. S4 Photovoltaic performance evolutions (J_{SC} , V_{OC} , FF, and PCE) of FAPbI₃ quantum dot solar cells using four kinds of Pb-salts (Control, Pb(NO₃)₂, Pb(OAc)₂, PbI₂, Pb(SCN)₂).

Fig. S5 (a) UPS spectra of w/wo $Pb(NO_3)_2$ posttreatment quantum dot films and (b) the correponding energy band positions for FAPbI₃ quantum dot solar cell.

UPS measurement is used to calculate the energy levels of original and $Pb(NO_3)_2$ -based solid films. The position of the valence band top is calculated by the following formula:^{S1}

$$E_{Homo} = -(h_v - E_{cutoff} + E_{VBF})$$
(Eq. 1)

Where $h_v \, \, E_{cutoff}$ and E_{VBF} in the formula represent photon energy, secondary electron cutoff energy, and injection barrier in turn. The calculated E_{Homo} values are -5.64 eV, and -5.24 eV for control and Pb(NO₃)₂-based film, respectively. The energy level values of SnO₂ and 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9' spirobifluorene(SpiroOMeTAD) were obtained from the literature. ##!***#\$P\$ we can see that the positions of VBM and CBM of Pb(NO₃)₂-based film are slightly upward than the original control film in Fig. S5b, which leads to a more favorable energy level arrangement inside the perovskite solar cell. This favorable energy level arrangement can promote the extraction of charge carriers.^{S1}

● FA • I ● Pb ● Pb vacancy ◎● exciton × Charge trapping

Fig. S6 Mechanism passivation for FAPbI₃ quantum dot.

Fig. S7 Survey XPS spectra of $FAPbI_3$ quantum dot films w/wo lead salt post-treatment.

Fig. S8 The optimized geometries of single-anchored crystal structure calculated by DFT calculation: (a) O-H and (b) O-C.

Fig. S9 The optimized geometries of double-anchored crystal structures by DFT calculation: (a) O-H…O-C, (b) O-H…O-N, (c) O-H…O-H, (d) O-C…O-C.

Fig. S10 (a) and (b) SEM images of $FAPbI_3$ quantum dot films w/wo $Pb(NO_3)_2$ posttreatment.

To investigate the effect of Pb(NO₃)₂ additives on grain growth, the surface morphology of FAPbI₃ quantum dot films were meticulously examined employing scanning electron microscopy (SEM). In **Fig. S10**, reveal that the Pb(NO₃)₂-based film exhibits a denser array of quantum dots with significantly fewer pinholes compared to the control film. This notable enhancement can be attributed to a multitude of contributory factors. Principally, the introduction of Pb(NO₃)₂ alters the surface chemistry of perovskite quantum dots by supplying essential Pb ions, building a Pb-rich environment. This facilitates tighter packing of crystals, consequently reducing both the porosity and defect density within the film. Additionally, Pb(NO₃)₂ undergoes chemical reactions with the FA⁺ ions present within the FAPbI₃ quantum dots, forming new chemical bonds that enhance the adhesion and density of the film. Additionally, owing to the inherently dynamic nature of halide perovskite quantum dots, the post-treatment regimen with nitrate salts triggers a partial recrystallization phenomenon on the surfaces thereof.

Fig. S11 FTIR spectra of FAPbI₃ quantum dot films w/wo Pb(NO₃)₂ post-treatment.

The surface chemistry environment of quantum dot films w/wo $Pb(NO_3)_2$ posttreatment was first characterized by Fourier transform infrared (FTIR). As displayed in **Fig. S11**, the peaks at 3403 cm⁻¹ and 3272 cm⁻¹ can be attributed to N-H₃⁺ and N-H scissor bending in oleylamine, and the peak at 2930 cm⁻¹ and 2858 cm⁻¹ are ascribed to the C-H_X scissor bending in oleic acid, are observed for the control films.⁸² For Pb(NO₃)₂-based film, the peaks described above almost disappear, which indicates that Pb(NO₃)₂ facilitates the removal of oleic acid and oleylamine ligands, thereby fabricating an excellent surface chemical environment for the quantum dot film.

Fig. S12 PL spectra with electron transport layer of $FAPbI_3$ quantum dot films w/wo $Pb(NO_3)_2$ post-treatment.

Fig. S13 TPV curve of FAPbI3 quantum dot devices w/wo Pb(NO3)2 post-treatment.

Fig. S14 (a) and (b) Absorption spectra stabilities of $FAPbI_3$ quantum dot films w/wo $Pb(NO_3)_2$ posttreatment.

Fig. S15 The corresponding relative absorption stabilities upon humidity of 20 % and room temperature at 660 nm.

To verify the stability of FAPbI₃ quantum dot films with double-anchored structure, the stability of control and Pb(NO₃)₂-based films under ambient conditions of 25 % humidity was evaluated (**Fig. S14**). The absorbance of the Pb(NO₃)₂-based film maintains its initial 78% at 660 nm after 14 days, while the control film decreases to 54%, as shown in **Fig. S15**. The absorbance attenuation of the control film is significantly faster than that of the Pb(NO₃)₂-based film. These results reveal that the stability of quantum dot films is significantly improved after repairing the surface defects of V_{Pb2+} and V_{FA+}.

Fig. S16. J_{ph} - V_{eff} curves of the FAPbI₃ quantum dot solar cell w/wo Pb(NO₃)₂ posttreatment.

The relationship between photocurrent density (J_{ph}) and effective voltage (V_{eff}) is a common indicator for assessing the charge carrier extraction efficiency in photovoltaic devices. The J_{ph} is defined as $J_{ph} = J_{lighl} - J_{dark}$, and V_{eff} is expressed as $V_{eff} = V_0 - V_a$, wherein V_0 represents the voltage when $J_{ph} = 0$ mA cm⁻², and V_a is applied as the bias voltage. With a growth in V_{eff} , J_{ph} linearly increases in the low V_{eff} region and then becomes saturated in the high V_{eff} region. Saturated J_{ph} represents the photogenerated carrier collected by the electrode at the low bias voltage stage.^{S3} Fig. S16 shows that the J_{ph} of the Pb(NO₃)₂-based device is higher than the control device, indicating more efficient carrier extraction and transport in the former, which also contributes to the higher current density.

Fig. S17. Mott-Schottky fitting to the C-V data of the FAPbI₃ quantum dot solar cells w/wo Pb(NO₃)₂ post-treatment.

The reduced trap density in solid quantum dot films could also impact the built-in potential (V_{bi}) of PQDSCs, which is crucial for the extraction of charge carriers in PQDSCs. As shown in **Fig. S17**, the V_{bi} of the Pb(NO₃)₂-based device is much higher than that of the control device. The enhanced V_{bi} is more beneficial in promoting charge separation and preventing carrier recombination, thus improving the charge collection efficiency of cells.

Theoretical calculations

Bonding mode	Binding Energy (eV)	Distance (Å)	
C-O	-7.46	5.086	
N-O	-8.93	3.861	
H-O	-8.89	4.395	
Н-О	0.05	6.406	
O-H	-9.25	5.408	
C-O	10.04	3.486	
O-C	-10.04	4.430	
C-O	0.40	3.486	
О-Н	-9.49	6.406	
N-O	0.1	3.755	
О-Н	-9.1	5.408	
N-O	N-O C-O	3.775	
C-O		3.486	

Table S1 The calculated binding energies and interatomic distances in the optimized structures.

Sample	A ₁	$ au_1(\mathbf{ns})$	\mathbf{A}_{2}	$ au_2(\mathbf{ns})$	$ au_{ave}$ (ns)
Control	65.77	10.28	12.18	70.79	44.20
Pb(NO ₃) ₂	46.12	14.11	13.80	74.92	51.44

Table S2 TRPL paraments of w/wo Pb(NO₃)₂ of FAPbI₃ quantum dot films.

The PL decay was fitted using the following equation,⁸⁴

$$\mathbf{I}(\mathbf{t}) = \mathbf{A}_1 \cdot \exp\left(-\frac{\mathbf{t}}{\tau_1}\right) + \mathbf{A}_2 \cdot \exp\left(-\frac{\mathbf{t}}{\tau_2}\right) + \mathbf{A}_0$$
(Eq. 2)

where A_0 , $A_{1and} A_2$ are constants, **t** is PL decay time, **t** is the fitted lifetime. The average lifetime (τ_{ave}) was calculated by the following equation,^{S4}

$$\tau_{ave} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$
(Eq. 3)

Sample	\mathbf{A}_{1}	$ au_{I}(\mu s)$
Control	1.31×10 ⁶	2.98
Pb(NO ₃) ₂	2.39×10 ⁸	2.17

Table S3 TPC paraments of w/wo $Pb(NO_3)_2$ of FAPbI₃ quantum dot films.

The fitted function for J_{SC} decay is shown in Eq. 4,⁸⁵

$$\mathbf{J}_{SC} = \mathbf{A}_1 \cdot \exp\left(-\frac{\mathbf{t}}{\tau_1}\right) + \mathbf{A}_0$$
(Eq. 4)

where A_0 and A_1 are constants, t is J_{SC} decay time, τ_1 is the fitted lifetime.

Sample	A ₁	$ au_1$ (ms)	A ₁	$ au_2$ (ms)	$ au_{ave}$ (ms)
Control	142.25	1.24	0.19	17.00	1.52
$Pb(NO_3)_2$	86.65	1.35	0.20	17.47	1.81

Table S4 TPV paraments of w/wo Pb(NO₃)₂ of FAPbI₃ quantum dot films.

The fitted function of TPV curves is shown in Eq. $5,^{86}$

$$\mathbf{V}_{OC} = \mathbf{A}_1 \cdot \exp\left(-\frac{\mathbf{t}}{\tau_1}\right) + \mathbf{A}_2 \cdot \exp\left(-\frac{\mathbf{t}}{\tau_2}\right) + \mathbf{A}_0$$
(Eq. 5)

where A_0 , $A_{1and} A_2$ are constants, **t** is VoC decay time, **\tau** is the fitted lifetime. The average lifetime (τ_{ave}) was calculated by the following equation,

$$\tau_{ave} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$
(Eq. 6)

Supporting References

- S1 C. Zhang, X. Yin, G. Chen, Z. Sang, Y. Yang, W. Que, *ACS Photonics*, 2023, 10, 790-800.
- S2 J. Yuan, C. Bi, J. Xi, R. Guo, J. Tian, J. Phys. Chem. Lett., 2021, 12, 1018-1024.
- S3 W. Zhu, Q. Zhang, D. Chen, Z. Zhang, Z. Lin, J. Chang, J. Zhang, C. Zhang, Y. Hao, *Adv. Energy Mater.*, 2018, 8, 1802080.
- S4 X. Fu, T. He, S. Zhang, X. Lei, Y. Jiang, D. Wang, P. Sun, D. Zhao, H.-Y. Hsu,
 X. Li, M. Wang, M. Yuan, *Chem*, 2021, 7, 3131-3143.
- S5 X. Zhang, J. Zhang, D. Phuyal, J. Du, L. Tian, V. A. Öberg, M. B. Johansson, U.
 B. Cappel, O. Karis, J. Liu, *Adv. Energy Mater.*, 2018, 8, 1702049.
- S6 L. Zhang, C. Kang, G. Zhang, Z. Pan, Z. Huang, S. Xu, H. Rao, H. Liu, S. Wu,
 X. Wu, Adv. Funct. Mater., 2021, 31, 2005930.