Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2019

Supporting Information

Boosting Charge Injection of Polymer Electrets for Light-stimulated

Artificial Synaptic Transistor

Dongfan Li^{1, 3}, Runyi Hu¹, Yufeng Zhu¹, Yifei Lu¹, Zhikun Hou¹, Jiamei Liu², Guanghao Lu³, Laju Bu^{1*}

¹School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China ²Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, 710049, P. R. China ³Frontier Institute of Science and Technology and State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, P. R. China

*Corresponding Authors: Prof. Laju Bu

Email: laju2014@mail.xjtu.edu.cn

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is ${\rm \textcircled{O}}$ The Royal Society of Chemistry 2019

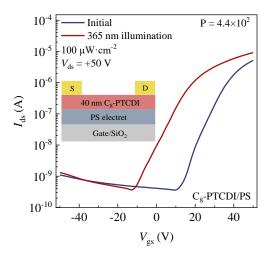
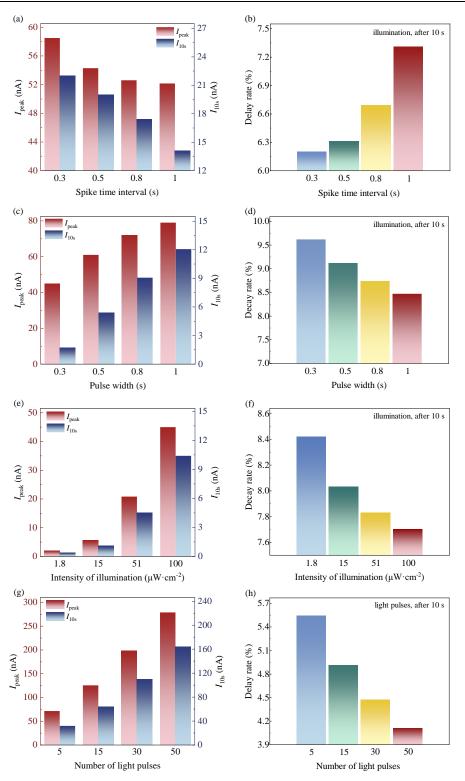



Fig. S1 The photoconductivity test of C_8 -BTBT/ C_8 -PTCDI/PS organic field-effect transistors.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Fig. S2 The four factors that affect the peak excitatory postsynaptic current values and the values after removing the light source 10 seconds. (a-b) Excitatory postsynaptic current, and decay rate versus the change in time under different spike time interval. Note that decay rate is defined as $[(I_{peak}-I_{10s})/(I_{peak}\times10)]\times100\%$. (c-d) Excitatory postsynaptic current increases with increasing pulse width, decay rate decreases with increasing pulse width. (e-f) Excitatory postsynaptic current increases with increases with increasing light intensity, decay rate decreases with increasing light intensity. (g-h) Excitatory postsynaptic current increases with increases with increases with increasing light pulses, decay rate decreases with increasing light pulses.