Supporting Information

Figure S1. PLQY of Cs₂NaGdCl₆: 4%Sb³⁺.

Figure S2. PLE spectra of $Cs_2NaGdCl_6$ doped Sb^{3+} and undoped Sb^{3+} under 445 nm excitation.

Figure S3. The emission spectra of $Cs_2NaGdCl_6$: 4%Sb³⁺ at different excitation wavelengths.

Figure S4. PL and PLE spectra of Cs₂NaGdCl₆: 4%Sb³⁺.

Figure S5. shows the XRD plots of $Cs_2NaGdCl_6$ doped with different Tb^{3+} concentrations as well as the strongest XRD peaks of the magnified.

Figure S6. XPS spectra of $Cs_2NaGdCl_6$: 4%Sb³⁺ 15% Tb³⁺.

Figure S7. PLQY of $Cs_2NaGdCl_6$: 4%Sb³⁺ 15%Tb³⁺.

Figure S8. XRD comparison of $Cs_2NaGdCl_6$: $4\%Sb^{3+}$ $2\%Tb^{3+}$ $4\%Ho^{3+}$ and $Cs_2NaGdCl_6$.

Figure S9. The emission spectra of $Cs_2NaGdCl_6$: 2%Tb³⁺ 4%Ho³⁺ doped Sb³⁺ and undoped Sb³⁺ under 365 nm excitation.

Figure S10. Electroluminescence spectra of $Cs_2NaGdCl_6$: 4%Sb³⁺.

Figure S11. Electroluminescence spectra of Cs₂NaGdCl₆: 4%Sb³⁺ 15%Tb³⁺.

Figure S12. Electroluminescence spectra of $Cs_2NaGdCl_6$: 4%Sb³⁺, $Cs_2NaGdCl_6$: 4%Sb³⁺ 15%Tb³⁺and commercial red phosphors mixed into white phosphors.

Figure S13. The CIE coordinates of Cs₂NaGdCl₆: 4%Sb³⁺, Cs₂NaGdCl₆: 4%Sb³⁺ 15%Tb³⁺and commercial red phosphors mixed into white phosphors.

Figure S14. Comparison of initial XRD of $Cs_2NaGdCl_6:4\%Sb^{3+} 2\%Tb^{3+} 4\%Ho^{3+}$ and XRD after three months.

Figure S15. The thermogravimetric curve of $Cs_2NaGdCl_6:4\%Sb^{3+} 2\%Tb^{3+} 4\%Ho^{3+}$.

Table S1. Comparison of radius percentage difference (D_r) between the doped Sb ion and matrix cation in the Cs₂NaGdCl₆ crystal lattice.

Ion type	Ion	Ion radius/Å(CN=6)	<i>D_r/%</i>
Doped ion	Sb ³⁺	0.760	
Matrix cation	Gd^{3+}	0.938	18.0
Matrix cation	Na ⁺	1.020	25.0

Table S2. Comparison of radius percentage difference (D_r) between the doped Ho ion and matrix cation in the Cs₂NaGdCl₆ crystal lattice.

Ion type	Ion	Ion radius/Å(CN=6)	<i>D_r</i> /%
Doped ion	Ho ³⁺	0.901	
Matrix cation	Gd^{3+}	0.938	3.9
Matrix cation	Na ⁺	1.020	11.7

Table S3. Comparison of radius percentage difference (D_r) between the doped Tb ion and matrix cation in the Cs₂NaGdCl₆ crystal lattice.

Ion type	Ion	Ion radius/Å(CN=6)	<i>D_r</i> /%
Doped ion	Tb^{3+}	0.923	
Matrix cation	Gd^{3+}	0.938	1.6
Matrix cation	Na ⁺	1.020	9.5