Supporting Information for

General synthesis for supported single-atom catalysts using hydroxyl nests in zeolites

Qiang Liu,^a Jingnan Wang, ^b Kaiheng Zhao,^c Yongan Yang^d and Xi Wang ^{*e,f}

^a School of Chemical Engineering and Technology, Tianjin University, Molecular Plus and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China

^b Molecular Engineering Plus, College of Chemistry, Fuzhou University, Fuzhou 350108, China

^c Key Laboratory of Photochemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^d Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, China

^e Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China

^f Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China

KEYWORDS: Single-atom catalysts, High-temperature catalysis, Hydroxyl-nests, Propane dehydrogenation, General synthesis.

* Corresponding author

Email: xiwang@bjtu.edu.cn

Equations:

Corrected peak area:

$$A_i = nA_jF_j$$

 A_i was the relative quantity of the hydrocarbon products, n was the carbon number of hydrocarbons, A_j was the peak area given by the FID results, and F_j was the relative correction factor.

Propane conversion was calculated as follows:

$$Conversion = \frac{\Sigma A_i}{\Sigma A_i + A_{C_3 H_8}}$$

The selectivity of hydrocarbon products is calculated as follows:

Selectivity_i =
$$\frac{A_i}{\Sigma A_i}$$

The yield of hydrocarbon products is calculated as follows:

$$\text{Yield} = \frac{A_i}{\Sigma A_i + A_{C_3 H_8}}$$

Carbon balance (> 95%) is calculated as follows:

Carbon balance =
$$\frac{\Sigma A_i}{A_{C_3H_8}}$$

The deactivation rate is calculated as follows:

$$k_{d}(h^{-1}) = rac{\ln\left(rac{1-Xend}{Xend}
ight) - \ln\left(rac{1-Xstart}{Xstart}
ight)}{t}$$

where Xstart and Xend represent the conversion at the start and the end of an experiment, and t is the duration of the experiment in hours, higher k_d values being indicative of rapid deactivation, that is, low stability.

Figure S1. The XRD spectra of S-1 zeolite.

Figure S2 The IR spectra of S-1 zeolite.

Figure S3 The XRD patterns of M-SACs.

Figure S4 The physical properties data of different catalysts.

Figure S5 The SEM images and the corresponding EDS mapping images of the Co-SAC catalyst.

Figure S6 The SEM images and the corresponding EDS mapping images of the Ni-SAC.

Figure S7 The SEM images and the corresponding EDS mapping images of the Cu-SAC.

Figure S8 The SEM images and the corresponding EDS mapping images of the Zn-SAC.

Figure S9 The XPS spectra of the Co-SAC catalysts: fresh catalysts and after calcination.

Figure S10 XPS spectra of the Ni-SAC catalysts: fresh catalysts and after calcination.

Figure S11 The XPS spectra of the Cu-SAC catalysts: fresh catalysts and after calcination.

Figure S12 The XPS spectra of the Zn-SAC catalysts: fresh catalysts and after calcination.

Figure S13 TEM image and the corresponding EDS mapping images of Co-SAC.

Figure S14 TEM image and the corresponding EDS mapping images of Ni-SAC.

Figure S15 TEM image and the corresponding EDS mapping images of Cu-SAC.

Figure S16 TEM image and the corresponding EDS mapping images of Zn-SAC.

Figure S17 HADDF-STEM image and the corresponding EDS mapping images of the Co/TiO $_2$ catalyst.

Figure S18 HADDF-STEM image and the corresponding EDS mapping images of the Co/SiO₂ catalyst.

Figure S19 HADDF-STEM image and the corresponding EDS mapping images of the Co/Al $_2$ O $_3$ catalyst.

Figure S20 HADDF-STEM image and the corresponding EDS mapping images of the Co/MCM-41. catalyst.

Figure S21 The K-edge near-edge XANES spectra of Co-SAC.

Figure S22 The K-edge near-edge XANES spectra of Ni-SAC.

Figure S23 The K-edge near-edge XANES spectra of Cu-SAC.

Figure S24 The K-edge near-edge XANES spectra of Zn-SAC.

Figure S25 The H_2 -TPR curve of M-SACs.

Figure S26 The XRD patterns of Co-SAC catalysts after reaction (a) and M-SAC catalysts after 10 h reaction (b).

Figure S27 The XPS patterns of Co-SAC catalysts after 130 h reaction.

Figure S28 The XPS patterns of Ni-SAC catalysts after reaction

Figure S29 The XPS patterns of Zn-SAC catalysts after reaction.

Figure S30 HADDF-STEM image, and the corresponding EDS mapping images of the fresh Co-SAC after 10 h reaction.

Figure S31 HADDF-STEM image and the corresponding EDS mapping images of the fresh Ni-SAC after 10 h reaction.

Figure S32 HADDF-STEM image and the corresponding EDS mapping images of the fresh Zn-SAC after 10h reaction.

Sample	Path	C.N.	R (Å)	σ² (10 ⁻³ Ų)	ΔE₀ (eV)	R-factor	
Co-SAC	Co-O	3.2	1.96	2.75	-1.27	0.020	
		±0.5	±0.012	±1.75	±1.90		
Ni-SAC	Ni-O	3.5	2.06	0.0*	-7.88	0.008	
		±0.6	±0.013	9.0*	±1.57		
Zn-SAC	Zn-O	3.2	1.93	7.0	-0.11	0.014	
		±0.5	±0.01	±1.56	±1.47	0.014	
Cu-SAC	Cu-O	3.3	1.94	4.6	-6.42	0.008	
		±0.3	±0.007	±1.01	±1.35		

Table S1. Structural parameters of M-SACs extracted from the EXAFS fitting (S0²=0.85)

S0² is the amplitude reduction factor S0²=0.85; CN is the coordination number; R is interatomic distance (the bond length between central atoms and surrounding coordination atoms); σ^2 is the Debye-Waller factor (a measure of thermal and static disorder in absorber-scatterer distances); ΔE_0 is edge-energy shift (the difference between the zero kinetic energy value of the sample and that of the theoretical model). R factor is used to value the goodness of the fitting. The obtained XAFS data was processed in Athena (version 0.9.26) for background, pre-edge line and post-edge line calibrations. Then Fourier transformed fitting was carried out in Artemis (version 0.9.26). The k³ weighting, k-range of 3-12 Å⁻¹ and R range of 1~3 Å were used for the fitting of foil; k-range of 2-11 Å⁻¹ and R range of 1~3 Å were used for the fitting of samples.

Catalyst	Temp.	Food composition	Con.	Sel.	K _d	Ref.
Catalyst	(°C)	Feed composition	(%)	(%)	(h-1)	
K-PtSn@MFI	600	C₃H ₈ : He= 6: 19	38.7	97	0.012	1
K-PtSn@MFI	600	C ₃ H ₈ : He= 5: 16	71	88	0.019	2
Pt/Fe-3	550	C ₃ H ₈ : N ₂ = 1: 3	47.5	90.5	0.012	3
PtSn/SiO ₂	580	Pure C_3H_8	40.4	99	0.008	4
ZnO-S-1	550	C ₃ H ₈ : N ₂ = 2: 3	30	90	0.49	5
ZnOx/S-1	600	C ₃ H ₈ : N ₂ = 2: 3	30.8	88	0.008	6
Cu-ZnO@S-1	600	C ₃ H ₈ : H ₂ = 7: 3	34.4	86.5	0.025	7
Co-MFI	580	C ₃ H ₈ : Ar= 1: 19	~58	97	-	8
Co-SBA-15	600	C ₃ H ₈ : H ₂ = 1: 6	37	96	-	9
Co SAs/SiO ₂	550	C ₃ H ₈ : N ₂ =2:6.4	25	95.1	0.009	10
Co-acac@S-1	600	C ₃ H ₈ : N ₂ = 1: 19	47	94.7	0.028	11
Co-SAC	560	C ₃ H ₈ : N ₂ = 1: 4	40.3	98	0.0045	This

Table S2. Comparison of the activity of catalysts in present work and reported literatures.

	Metal	content	dispersion	
Catalyst	(v	vt%)	(%)	
	fresh	spent	-	
Co-SAC	1.5	1.49	95.2	
Ni-SAC	1.32	1.31	93.8	
Cu-SAC	1.29	-	93.0	
Zn-SAC	1.17	1.15	92.5	

Table S3. Metal content and dispersion of M-SACs.

References:

1. Liu, L. C. et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. *Nat. Catal.* **2020**, *3*, 628-638.

2. Liu, L. C. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in eolites for high-temperature catalysis. *Nat. Mater.* **2019**, *18*, 866-873.

3. Liu, H. et al. Isolated Pt Species Anchored by Hierarchical-like Heteroatomic Fe- Silicalite-1 Catalyze Propane Dehydrogenation near the Thermodynamic Limit. *ACS Catal.* **2023**, *13*, 2928-2936.

4. Motagamwala, A. H., Almallahi, R., Wortman, J., Igenegbai, V. O. & Linic, S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. *Science* **2021**, *373*, 217-222.

5. Zhao, D. et al. In situ formation of ZnOx species for efficient propane dehydrogenation. *Nature* **2021**, *599*, 234-238.

6. Zhao, D. et al. Controlling Reaction-Induced Loss of Active Sites in ZnOx/Silicalite-1for Durable Nonoxidative Propane Dehydrogenation. *ACS Catal.* **2022**,*12*, 4608-4617

7. Song, S. J. et al. Silicalite-1 Stabilizes Zn-Hydride Species for Efficient Propane Dehydrogenation. *ACS Catal.* **2022**, *12*, 5997-6006.

8. Hu, Z. P. et al. Atomic Insight into the Local Structure and Microenvironment of Isolated Co Motifs in MFI Zeolite Frameworks for Propane Dehydrogenation. *J. Am. Chem. Soc.* **2022**, 144, 12127-12137

9. Huang, Z. J. et al. Illustrating a new understanding of adsorbed water on silica for inducing tetrahedral cobalt(II) for propane dehydrogenation. *Nat. Commun.* **2023**, *14*, 100.

10. Wang, W. Y. et al. Single Co Sites in Ordered SiO₂ Channels for Boosting Nonoxidative Propane Dehydrogenation. *ACS Catal.* **2022**, *12*, 2632-2638.

11. Song, S. J. et al. In situ encapsulated subnanometric CoO clusters within silicalite-1 zeolite for efficient propane dehydrogenation. *AIChE J.***2022**,*68*, e17451.