Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Synergistically in-situ growth of MOF on the surface of Ti₃C₂Tx MXene nanosheet with different Tannic Acid (TA) ration for the Photocatalytic degradation of Pollutants

Huanggen Yang¹, Pei Zhang^{2*}, Qi Zheng^{2*}, Asif Hayat³ Hisham S.M. Abd-Rabboh⁴, Saleem Raza^{3*}, Duofu Li¹, Yan Sui¹

¹Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials,
College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, P.R,
China

²Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P.R, China

³College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R, China

⁴Chemistry Department, College of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia

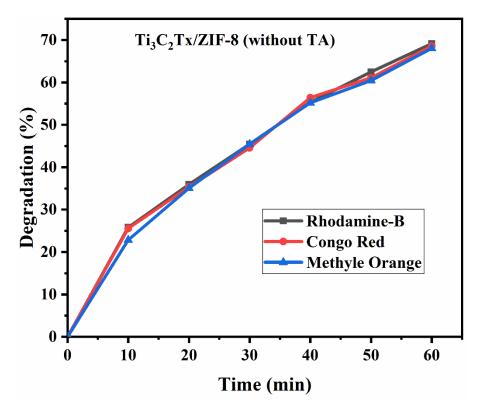


Fig. S1. The Ti₃C₂/ZIF degradation ability without modified with TA.