Electronic supplementary information

A post-reduction strategy to enhance near-infrared-II emission from Li4SrCa(SiO4)2:Cr4+ phosphors

Yixin Sun,^a Yining Wang,^a Minliang Deng,^a Xiaole Xing,^a Yiying Zhu,^a and Mengmeng Shang,*^a

^a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, School of Material Science and Engineering, Shandong University, 17923 Jingshi Road, Jinan 250061, P. R. China. E-mail: mmshang@sdu.edu.cn

Compound	$LSCS: 0.1\% Cr^{4+}$	$LSCS:3\%Cr^{4+}$
a, \AA	4.9757	4.9757
b, \AA	9.9216	9.9235
c, \AA	14.0403	14.0395
V, \AA^3	693.13	693.22
α , \circ	90	90
β , \circ	90	90
γ , \circ	90	90
R_{wp} , %	10.51	11.21
R_p , %	7.81	8.03
χ^2	3.032	3.222

Table S1 Main parameters of processing and refinement results of LSCS:0.1%Cr⁴⁺ and LSCS:3%Cr⁴⁺.

Table S2 Luminescence properties of Cr⁴⁺-doped Si-based NIR luminescent materials.

Materials	$\lambda_{\rm ex}, \lambda_{\rm em}$	Emission	FWHM	IQE	Ref.
	(nm)	Range (nm)	(nm)		
$Zn_2SiO_4:Cr^{4+}$	800, 1350	$1100 - 1600$	300	1.7%	[S1]
$Mg_2SiO_4:Cr^{4+}$	800, 1130	$800 - 1500$	220	2.0%	[S1]
$Li2ZnSiO4:Cr4+$	800, 1170	$1000 - 1600$	240	17%	[S1]
$Li2MgSiO4:Cr4+$	800, 1210	$1000 - 1500$	230	2.2%	[S1]
$Li2CaSiO4:Cr4+$	680, 1150	$1000 - 1500$	\sim 200		[S2]
$LSCS:Cr^{4+}$	465, 1215	$900 - 1600$	233	2.2%	This work
$LSCSH:Cr4+$	465, 1215	$900 - 1600$	228	27%	This work

Compound	$LSCSH:0.1\%Cr^{4+}$	$LSCSH:3\%Cr^{4+}$
a, \AA	4.9778	4.9776
b, \AA	9.9255	9.9255
c, \AA	14.0464	14.0475
V, \mathring{A}^3	693.99	694.02
α , \circ	90	90
β , \circ	90	90
γ , \circ	90	90
R_{wp} , %	10.84	12.08
$R_p, \%$	7.95	8.78
χ^2	2.701	3.612

Table S3 Main parameters of processing and refinement results of LSCSH:0.1%Cr⁴⁺ and LSCSH:3%Cr⁴⁺.

Table S4 Temperature sensing performance of various materials based on spectral shift (Δ*λ*) and decay times (*τ*).

Materials	Method	Maximum S_R (K ⁻¹)	Ref.
$Ca2Al2SiO7:Cr4+$	$\Delta\lambda$	0.61%	[S3]
	τ	0.25%	
$CaYGaO4:Cr4+$	$\Delta\lambda$	5.82% @100 K	[S4]
	τ	0.78% @ 350 K	
$Sr_4Al_{14}O_{25}$: Mn^{4+}	τ	1.5% (a) 420 K	[S5]
$CaZnOS:Mn^{2+}$	τ	1.71% (a) 150 K	[S6]
$Ba_3(VO_4)_2:Mn^{4+}, Er^{3+}$	τ	1.71% (a) 150 K	[S7]
$Li_4SrCa(SiO_4)_2:Cr^{4+}$	λ	1.71% @ 150 K	This
	τ	1.69% @ 425 K	work

Fig. S1 SEM image and elemental mapping images of LSCS:3%Cr⁴⁺.

Fig. S2 Fluorescence decay curves of LSCS: xCr^{4+} ($x = 1\% \sim 11\%$).

Fig. S3 The linear fitting of log (*I*/*x*) versus log (*x*) of LSCS: xCr^{4+} ($x = 1\% \sim 11\%$).

Fig. S4 The quantum efficiency of $LSCS:3\%Cr^{4+}$.

Fig. S5 (a) UV-vis-NIR DR spectra and (b) the optical band gap of LSCS: xCr^{4+} ($x = 0$, 0.5% and 3%). (c) The PLE spectrum of the LSCS:3%Cr⁴⁺.

Fig. S6 The XPS survey spectrum and high-resolution XPS spectrum of Cr2p level of LSCS:3%Cr⁴⁺.

Fig. S7 The PL spectra of LSCSH:yCr⁴⁺.

Fig. S8 XRD patterns of LSCSH: yCr^{4+} ($y = 0$, 1% and 5%).

Fig. S9 SEM images of (a) LSCS:3% Cr^{4+} and (b) LSCSH:3% Cr^{4+} .

Fig. S10 The emission spectra of LSCS:3%Cr⁴⁺ under different sintering conditions.

Fig. S11 The optical band gap of LSCS: 0.5% Cr⁴⁺ and LSCSH: 0.5% Cr⁴⁺.

Fig. S12 Monitoring normalized PLE spectra at 1115 - 1515 nm of LSCSH:3%Cr⁴⁺.

Fig. S13 The quantum efficiency of LSCSH:3%Cr⁴⁺.

Fig. S14 The Rietveld refinement of LSCSH:0.1%Cr⁴⁺.

Fig. S15 XRD patterns of the H - Li₄Sr_{1+z}Ca_{1-z}(SiO₄)₂:3%Cr⁴⁺ (a) $z = 0.1 \sim 1$ and (b) $z = -1 \sim -0.1$.

Fig. S16 The PL spectra of H - Li₄Sr_{1+z}Ca_{1-z}(SiO₄)₂:3%Cr⁴⁺ (a) $z = 0 \sim 0.5$ and (b) $z = -0.4 \sim 0$.

Fig. S17 The PL spectral intensity increased times of Li₂SrSiO₄:3%Cr⁴⁺ and Li₂CaSiO₄:3%Cr⁴⁺ by postreduction strategy.

Fig. S18 Temperature-dependent (a) PL spectra and (b) relative emission intensity of LSCS:3%Cr⁴⁺.

Configuration Coordination

Fig. S19 Configurational coordinate diagram illustrating band broadening and thermal quenching behaviors of LSCSH:yCr⁴⁺.

Fig. S20 Calculated S_A and S_R values via $\Delta\lambda$ changing with temperature.

To insight into the the nature of ion - ion interaction in the lattice, the critical distance R_c can be computed using the following formula:^[S8]

$$
R_c \approx 2\left(\frac{3V}{4\pi X_c N}\right)^{\frac{1}{3}}
$$
\n^(S1)

Within this equation, *V* represents the unit cell volume, *X^c* stands for the critical concentration and *N* signifies the number of sites within a unit cell where Cr^{4+} ions can substitute. In this scenario, $V = 693.22$ \AA^3 , $N = 4$ and $X_c = 0.03$. The computed value for R_c is 22.26 Å, significantly exceeding the critical distance of 5 Å for exchange interaction. Therefore, the non-radiative energy transfer mechanism is multipolar interaction. The type of interaction between Cr ions is calculated by eqn. S2:[S9]

$$
\frac{I}{x} = K \left[1 + \beta(x) \right]^{\frac{\theta}{3}} \right]^{-1}
$$
\n^(S2)

Where *I* represents for the PL spectra intensity and *x* stands for the corresponding activator concentration, *K* and β are constants. Fig. S3 depicts the linear fitting of log (*I/x*) to log (*x*), yielding a slope of -1.10 and *θ* as 3.30. This indicates that the energy transfer between neighboring ions serves as the main concentration quenching mechanism of LSCS: xCr^{4+} , since θ is close to 3.

The optical band gap can be calculated using the following Kubelka-Munk formula:^[S10,S11]

$$
F(R) = \frac{(1 - R)^2}{2R}
$$
 (S3)

$$
[F(R) \times hv]^{1/n} = A(hv - E_g)
$$
\n^(S4)

where *F(R)* is the absorption, *R* is the reflectance, *hν* is the photon energy, *A* is the absorption constant, and E_g is the optical band gap. The *n* values determined by the directly allowed transition, directly forbidden transition, indirectly allowed transition, and indirectly forbidden transition are 1/2, 3/2, 2, and 3, respectively. The electronic transition of this garnet belongs to directly allowed transition ($n = 1/2$), so the E_g is estimated to be 5.7 eV (LSCS), 4.95 eV (LSCS:0.5%Cr⁴⁺), 4.5 eV (LSCS:3%Cr⁴⁺) and 5.1 eV $(LSCSH: 0.5\% Cr^{4+})$ respectively.

The activation energy (ΔE) can further evaluate thermal stability and can be computed using the Arrhenius formula: [S12-S14]

$$
I_T = \frac{I_0}{1 + Aexp(\frac{-\Delta E}{kT})}
$$
(S5)

Where, I_T is the luminous intensity at temperature T , I_0 is the original intensity, A is a constant, and k is 8.617×10^{-5} eV K⁻¹ (Boltzmann constant). The calculated $\Delta E = 0.19$ eV for LSCSH:3%Cr⁴⁺.

References

- [S1] Y. Zhuang, S. Tanabe, J. Qiu, *J. Am. [Ceram.](https://www.x-mol.com/paper/journal/176?r_detail=1233843728430419968) Soc.*, 2014, **97**, 3519-3523.
- [S2] M. Y. Sharonov, A. B. Bykov, V. Petričević, R. R. Alfano, *Opt. Commun.*, 2004, **231**, 273.
- [S3] X.Chen, S.Liu, K.Huang, J.Nie, R.Kang, X.Tian, S.Zhang, Y.Li, J. Qiu, *Chem. Eng. J.*, 2020, **396**, 125201.
- [S4] Y. Wang, G. Liu, Z. Xia, *Laser Photon. Rev.*, 2023, 2300717.
- [S5] M. Pieprz, W. Piotrowski, P. Woźny, M. Runowski, L. Marciniak, *Adv. Opt. Mater*., 2023, 2301316.
- [S6] T. Zheng, M. Runowski, I.R. Martín, K. Soler-Carracedo, L. Peng, M. Skwierczyńska, M. Sójka, J. Barzowska, S. Mahlik, H. Hemmerich, F. Rivera-López, P. Kulpiński, V. Lavín, D. Alonso, D. Peng, *Adv. Mater*., 2023, 2304140.
- [S7] W. M. Piotrowski, R. Marin, M. Szymczak, E. M. Rodríguez, D.H. Ortgies, P. Rodríguez-Sevilla, M.D. Dramićanin, D. Jaque, L. Marciniak, *Adv. Opt. Mater.*, 2023, **11**, 2202366.
- [S8] G. Guo, T. Yin, M. Dong, J. Nie, Y. Zhang, Z. Liu, F. Wang, X. Li, *Opt. Express*, 2023, **31**, 25978- 25992.
- [S9] B. Bai, P. Dang, D. Huang, H. Lian, J. Lin, *Inorg. Chem.*, 2020, **59**, 13481-13488.
- [S10] C. Li, J. Zhong, *Chem. Mater.*, 2022, **34**, 8418.
- [S11] T. Gao, W. Zhuang, R. Liu, Y. Liu, X. Chen, Y. Xue, *J. Alloys Compd.*, 2020, **848**, 156557.
- [S12] G. Guo, T. Yin, M. Dong, J. Nie, Y. Zhang, Z. Liu, F. Wang, X. Li, *Opt. Express*, 2023, **31**, 25978- 25992.
- [S13] T. Yang, L. Chu, T. Zhang, Q. Zhou, Y. Qin, Z. Wang, J. Wan, M. Wu, *J. Alloys Compd.*, 2023, **965**, 171336.
- [S14] J. Li, B. Liu, G. Liu, Q. Che, Y. Lu, Z. Liu, *J. Rare Earths.*, 2023, **41**, 1689.