Electronic supplementary information

A post-reduction strategy to enhance near-infrared-II emission from Li₄SrCa(SiO₄)₂:Cr⁴⁺ phosphors

Yixin Sun,^a Yining Wang,^a Minliang Deng,^a Xiaole Xing,^a Yiying Zhu,^a and Mengmeng Shang,^{*a}

^a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, School of Material Science and Engineering, Shandong University, 17923 Jingshi Road, Jinan 250061, P. R. China. E-mail: mmshang@sdu.edu.cn

Compound	LSCS:0.1%Cr ⁴⁺	LSCS:3%Cr ⁴⁺
<i>a</i> , Å	4.9757	4.9757
b, Å	9.9216	9.9235
<i>c</i> , Å	14.0403	14.0395
<i>V</i> , Å ³	693.13	693.22
α, °	90	90
eta,\circ	90	90
γ, °	90	90
$R_{wp}, \%$	10.51	11.21
$R_p, \%$	7.81	8.03
χ ²	3.032	3.222

Table S1 Main parameters of processing and refinement results of LSCS:0.1%Cr⁴⁺ and LSCS:3%Cr⁴⁺.

 Table S2 Luminescence properties of Cr⁴⁺-doped Si-based NIR luminescent materials.

Materials	$\lambda_{ex}, \lambda_{em}$	Emission	FWHM	IQE	Ref.
	(nm)	Range (nm)	(nm)		
Zn_2SiO_4 :Cr ⁴⁺	800, 1350	1100 - 1600	300	1.7%	[S1]
$Mg_2SiO_4:Cr^{4+}$	800, 1130	800 - 1500	220	2.0%	[S1]
Li ₂ ZnSiO ₄ :Cr ⁴⁺	800, 1170	1000 - 1600	240	17%	[S1]
Li2MgSiO4:Cr4+	800, 1210	1000 - 1500	230	2.2%	[S1]
Li2CaSiO4:Cr4+	680, 1150	1000 - 1500	~ 200		[S2]
LSCS:Cr ⁴⁺	465, 1215	900 - 1600	233	2.2%	This work
LSCSH:Cr ⁴⁺	465, 1215	900 - 1600	228	27%	This work

Compound	LSCSH:0.1%Cr ⁴⁺	LSCSH:3%Cr ⁴⁺
<i>a</i> , Å	4.9778	4.9776
b, Å	9.9255	9.9255
<i>c</i> , Å	14.0464	14.0475
<i>V</i> , Å ³	693.99	694.02
α, °	90	90
eta,\circ	90	90
γ, °	90	90
$R_{wp}, \%$	10.84	12.08
$R_{p}, \%$	7.95	8.78
χ^2	2.701	3.612

Table S3 Main parameters of processing and refinement results of LSCSH:0.1%Cr⁴⁺ and LSCSH:3%Cr⁴⁺.

Table S4 Temperature sensing performance of various materials based on spectral shift ($\Delta\lambda$) and decay times (τ).

Materials	Method	Maximum S_R (K ⁻¹)	Ref.
$Ca_2Al_2SiO_7:Cr^{4+}$	Δλ	0.61%	[\$3]
	τ	0.25%	
CaYGaO ₄ :Cr ⁴⁺	$\Delta \lambda$	5.82% @100 K	[S4]
	τ	0.78% @350 K	
$Sr_4Al_{14}O_{25}:Mn^{4+}$	τ	1.5% @ 420 K	[85]
CaZnOS:Mn ²⁺	τ	1.71% @ 150 K	[S6]
Ba ₃ (VO ₄) ₂ :Mn ⁴⁺ , Er ³⁺	τ	1.71% @ 150 K	[S7]
Li ₄ SrCa(SiO ₄) ₂ :Cr ⁴⁺	Δλ	1.71% @ 150 K	This
	τ	1.69% @ 425 K	work

Fig. S1 SEM image and elemental mapping images of LSCS:3%Cr⁴⁺.

Fig. S2 Fluorescence decay curves of LSCS: xCr^{4+} (x = 1% ~ 11%).

Fig. S3 The linear fitting of log (I/x) versus log (x) of LSCS:xCr⁴⁺ ($x = 1\% \sim 11\%$).

Fig. S4 The quantum efficiency of LSCS:3%Cr⁴⁺.

Fig. S5 (a) UV-vis-NIR DR spectra and (b) the optical band gap of LSCS: xCr^{4+} (x = 0, 0.5% and 3%). (c) The PLE spectrum of the LSCS: $3\%Cr^{4+}$.

Fig. S6 The XPS survey spectrum and high-resolution XPS spectrum of Cr2p level of LSCS:3%Cr⁴⁺.

Fig. S7 The PL spectra of LSCSH:yCr⁴⁺.

Fig. S8 XRD patterns of LSCSH: yCr^{4+} (y = 0, 1% and 5%).

Fig. S9 SEM images of (a) LSCS:3%Cr⁴⁺ and (b) LSCSH:3%Cr⁴⁺.

Fig. S10 The emission spectra of LSCS:3%Cr⁴⁺ under different sintering conditions.

Fig. S11 The optical band gap of LSCS:0.5%Cr⁴⁺ and LSCSH:0.5%Cr⁴⁺.

Fig. S12 Monitoring normalized PLE spectra at 1115 - 1515 nm of LSCSH:3%Cr⁴⁺.

Fig. S13 The quantum efficiency of LSCSH:3%Cr⁴⁺.

Fig. S14 The Rietveld refinement of LSCSH:0.1%Cr⁴⁺.

Fig. S15 XRD patterns of the H - $Li_4Sr_{1+z}Ca_{1-z}(SiO_4)_2$:3%Cr⁴⁺ (a) $z = 0.1 \sim 1$ and (b) $z = -1 \sim -0.1$.

Fig. S16 The PL spectra of H - $Li_4Sr_{1+z}Ca_{1-z}(SiO_4)_2$:3%Cr⁴⁺ (a) $z = 0 \sim 0.5$ and (b) $z = -0.4 \sim 0$.

Fig. S17 The PL spectral intensity increased times of $Li_2SrSiO_4:3\%Cr^{4+}$ and $Li_2CaSiO_4:3\%Cr^{4+}$ by post-reduction strategy.

Fig. S18 Temperature-dependent (a) PL spectra and (b) relative emission intensity of LSCS:3%Cr⁴⁺.

Configuration Coordination

Fig. S19 Configurational coordinate diagram illustrating band broadening and thermal quenching behaviors of LSCSH:yCr⁴⁺.

Fig. S20 Calculated S_A and S_R values via $\Delta \lambda$ changing with temperature.

To insight into the nature of ion - ion interaction in the lattice, the critical distance R_c can be computed using the following formula:^[S8]

$$R_c \approx 2 \left(\frac{3V}{4\pi X_c N}\right)^{\frac{1}{3}} \tag{S1}$$

Within this equation, V represents the unit cell volume, X_c stands for the critical concentration and N signifies the number of sites within a unit cell where Cr⁴⁺ ions can substitute. In this scenario, V = 693.22 Å³, N = 4 and $X_c = 0.03$. The computed value for R_c is 22.26 Å, significantly exceeding the critical distance of 5 Å for exchange interaction. Therefore, the non-radiative energy transfer mechanism is multipolar interaction. The type of interaction between Cr ions is calculated by eqn. S2:^[S9]

$$\frac{I}{x} = K \left[1 + \beta(x)^{\frac{\theta}{3}} \right]^{-1}$$
(S2)

Where *I* represents for the PL spectra intensity and *x* stands for the corresponding activator concentration, *K* and β are constants. Fig. S3 depicts the linear fitting of log (*I*/*x*) to log (*x*), yielding a slope of -1.10 and θ as 3.30. This indicates that the energy transfer between neighboring ions serves as the main concentration quenching mechanism of LSCS:xCr⁴⁺, since θ is close to 3.

The optical band gap can be calculated using the following Kubelka-Munk formula:[S10,S11]

$$F(R) = \frac{(1-R)^2}{2R}$$
(S3)

$$[F(R) \times h\nu]^{1/n} = A(h\nu - E_g)$$
(S4)

where F(R) is the absorption, *R* is the reflectance, *hv* is the photon energy, *A* is the absorption constant, and E_g is the optical band gap. The *n* values determined by the directly allowed transition, directly forbidden transition, indirectly allowed transition, and indirectly forbidden transition are 1/2, 3/2, 2, and 3, respectively. The electronic transition of this garnet belongs to directly allowed transition (n = 1/2), so the E_g is estimated to be 5.7 eV (LSCS), 4.95 eV (LSCS:0.5%Cr⁴⁺), 4.5 eV (LSCS:3%Cr⁴⁺) and 5.1 eV (LSCSH:0.5%Cr⁴⁺) respectively.

The activation energy (ΔE) can further evaluate thermal stability and can be computed using the Arrhenius formula:^[S12-S14]

$$I_T = \frac{I_0}{1 + Aexp(\frac{-\Delta E}{kT})}$$
(S5)

Where, I_T is the luminous intensity at temperature *T*, I_0 is the original intensity, A is a constant, and k is 8.617 × 10⁻⁵ eV K⁻¹ (Boltzmann constant). The calculated $\Delta E = 0.19$ eV for LSCSH:3%Cr⁴⁺.

References

- [S1] Y. Zhuang, S. Tanabe, J. Qiu, J. Am. Ceram. Soc., 2014, 97, 3519-3523.
- [S2] M. Y. Sharonov, A. B. Bykov, V. Petričević, R. R. Alfano, Opt. Commun., 2004, 231, 273.
- [S3] X.Chen, S.Liu, K.Huang, J.Nie, R.Kang, X.Tian, S.Zhang, Y.Li, J. Qiu, Chem. Eng. J., 2020, 396, 125201.
- [S4] Y. Wang, G. Liu, Z. Xia, Laser Photon. Rev., 2023, 2300717.
- [S5] M. Pieprz, W. Piotrowski, P. Woźny, M. Runowski, L. Marciniak, Adv. Opt. Mater., 2023, 2301316.
- [S6] T. Zheng, M. Runowski, I.R. Martín, K. Soler-Carracedo, L. Peng, M. Skwierczyńska, M. Sójka, J. Barzowska, S. Mahlik, H. Hemmerich, F. Rivera-López, P. Kulpiński, V. Lavín, D. Alonso, D. Peng, *Adv. Mater.*, 2023, 2304140.
- [S7] W. M. Piotrowski, R. Marin, M. Szymczak, E. M. Rodríguez, D.H. Ortgies, P. Rodríguez-Sevilla, M.D. Dramićanin, D. Jaque, L. Marciniak, *Adv. Opt. Mater.*, 2023, 11, 2202366.
- [S8] G. Guo, T. Yin, M. Dong, J. Nie, Y. Zhang, Z. Liu, F. Wang, X. Li, Opt. Express, 2023, 31, 25978-25992.
- [S9] B. Bai, P. Dang, D. Huang, H. Lian, J. Lin, Inorg. Chem., 2020, 59, 13481-13488.
- [S10] C. Li, J. Zhong, Chem. Mater., 2022, 34, 8418.
- [S11] T. Gao, W. Zhuang, R. Liu, Y. Liu, X. Chen, Y. Xue, J. Alloys Compd., 2020, 848, 156557.
- [S12] G. Guo, T. Yin, M. Dong, J. Nie, Y. Zhang, Z. Liu, F. Wang, X. Li, Opt. Express, 2023, 31, 25978-25992.
- [S13] T. Yang, L. Chu, T. Zhang, Q. Zhou, Y. Qin, Z. Wang, J. Wan, M. Wu, J. Alloys Compd., 2023, 965, 171336.
- [S14] J. Li, B. Liu, G. Liu, Q. Che, Y. Lu, Z. Liu, J. Rare Earths., 2023, 41, 1689.