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4. Experimental details

4.1 Materials

PM6 and Y6 were purchased from Solarmer Materials Inc; DCJTB was 

purchased from Luminescence Technology Corp; Chloroform (CF) was purchased 

from Sigma-Aldrich Co. MoO3 and Ag were purchased from Alfa Aesar Co. The 

photoactive solution with the blend of PM6, Y6 and DCJTB (the ratio of the PM6:Y6 

is 1:1.3, PM6 content is 10 mg mL-1, DCJTB content were varied according to 

measurement) was dissolved in CF and stirred overnight. The photoactive solution 

with the solvent additive of 1-chloronaphthalene (CN) (0.5%, v/v). The ZnO solution 

was synthesized by a sol-gel method 1, 2.

4.2 Device preparation and characteristics

Indium–tin-oxide (ITO) glasses were ultrasonicated at 30 °C in isopropyl alcohol, 

acetone and deionized water for 30 min. The ITO glasses were then dried by a stream 

of nitrogen and heated on the hot-stage. Firstly, spin-coating ZnO solution on the top 

of ITO glass (the speed is 3000 rpm and continue 1 min) and baked at 150 °C for 20 

min in air (the thickness of ZnO thin films is 20 nm). The photoactive layer solution 

was spin-coated on the ZnO layer in a N2-filled glove box to form the photoactive 

layer (the speed is 1800 rpm and continue 1 min), and the thermal annealing treatment 

(120 °C for 15 min, the nominal thickness of ~100 nm). The electron extraction layer 

of the MoO3 layer and electrode of Ag films were evaporated under vacuum through a 

shadow mask to define the active area of the devices (22 mm2). The OSC devices 

have an inverted configuration: ITO/ZnO/D18-Cl:Y6:DCJTB/MoO3/Ag. All average 



values with standard deviations were calculated from ten parallel devices. The current 

density versus voltage (J–V) characteristics of the OSCs were measured in a glove 

box with a computer-controlled Keithley 236 Source Measure Unit under illumination 

at 100 mW cm-2 using an AM1.5 G solar simulator. The external quantum efficiency 

(EQE) spectrum was measured with a Stanford Research Systems model SR830 DSP 

lock-in amplifier coupled to a WDG3 monochromator and a 500 W xenon lamp.

The space-charge-limited-current (SCLC) method was employed to investigate 

the charge carrier mobility. The charge carrier mobility was measured by the space 

charge limited current (SCLC) method, and the hole-only and electron-only devices 

had ITO/PEDOT:PSS/photoactive layer/Au and Al/photoactive layer/Al structures, 

respectively. The charge carrier mobilities were calculated using the following 

equation 3, 4:
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where J is the current density,  is the charge carrier mobility,  (8.85×10-14  0

F/cm) and  are the permittivity of free space and relative permittivity of the r

material (  was assumed to be 3), respectively, and V is the SCLC effective r

voltage. The charge carrier mobility was calculated using the following 

equation 5:
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where  is the charge mobility under zero electric field and  is a constant. 0 

The Mott-Gurney equation can then be described by 6: 
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In this case, the charge mobility were estimated using the following equation 6:
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4.3 XRD Measurement

The angles at which the peak intensities occur are related to the inter-planar 

distances of the atomic structure of the photoactive layer and the crystallinity of the 

photoactive layer; these angles are related by Bragg’s law 7:

  2 sind

where  is the wavelength of the X-ray radiation used (0.154 nm),  is the peak 

position half-angle, and d is the inter-planar distance.
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Figure S1. J-V characteristics of typical OSCs of PM6:Y6 based binary OSCs, 

optimized ternary OSCs and high DCJTB ternary OSCs under various light intensities 

ranging from 100 mW cm-2 to 5 mW cm-2 corresponding to Figure S1(a), S1(b) and 

S1(c), respectively.
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Figure S2. The XRD curve of neat films (PM6, Y6 and DCJTB) for (a) and three 

typical films (PM6:Y6 binary film, optimized ternary film and high DCJTB ternary 

film) for (b).

 

Figure S3. The TEM image of neat PM6, Y6 and DCJTB films.
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Figure S4. The TEM image of three typical films.

Figure S5. The AFM image of neat PM6, Y6 and DCJTB films.

Figure S6. The AFM image of three typical films.
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