Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

ESI for Highly Fluorescent Carbene-Metal-Acetylide Gold Complexes with Efficient OLEDs and 2-Photon Absorption

SUPPORTING INFORMATION FOR

Unity Fluorescent Carbene-Gold(I)-Acetylide Complexes with Two-Photon Absorption and Energy-Efficient Blue FOLED

Alexander C. Brannan, Hwan-Hee Cho, Jonathan Daniel, Nguyen Le Phuoc, Amelia Harvey, Charles T. Smith, Mikko Linnolahti, * Mireille Blanchard-Desce, * Neil C. Greenham* and Alexander S. Romanov*

Supporting Information Table of Contents

General Considerations	3
Experimental	4
Thermogravimetric Analysis	16
Single Crystal X-ray Crystallography	17
Cyclic Voltammetry	18
Photophysical Characterisation	19
2-Photon Absorption	23
Computational Calculations	27
References	35

GENERAL CONSIDERATIONS

All reactions were performed under a N₂ atmosphere. Solvents were dried as required. Reagents and catalysts were purchased from commercial vendors and used as received. (BiCAAC)AuCl was prepared according to the literature procedure.¹ ¹H and ${}^{13}C{}^{1}H$ NMR spectra were recorded using a Bruker AVIII HD 500 MHz NMR spectrometer. ¹H NMR spectra (500.19 MHz) and ${}^{13}C{}^{1}H{}$ (125.79 MHz) were referenced to CD_2Cl_2 at δ 5.32 (${}^{13}C$, δ 53.84) and CDCl₃ at δ 7.26 (¹³C, δ 77.16). IR spectra were recorded using a Bruker ALPHA FT-IR spectrometer equipped with a platinum ATR attachment. All electrochemical experiments were performed using an Autolab PGSTAT 302N computer-controlled potentiostat. Cyclic voltammetry (CV) was performed using a three-electrode configuration consisting of a glassy carbon macrodisk working electrode (GCE) (diameter of 3 mm; BASi, Indiana, U.S.A.) combined with a Pt wire counter electrode (99.99%; GoodFellow, Cambridge, U.K.) and an Ag wire pseudoreference electrode (99.99%; GoodFellow, Cambridge, U.K.). The GCE was polished between experiments using alumina slurry (0.3 µm), rinsed in distilled water and subjected to brief sonication to remove any adhering alumina microparticles. The metal electrodes were then dried in an oven at 100 °C to remove residual traces of water, the GCE was left to air dry and residual traces of water were removed under vacuum. The Ag wire pseudoreference electrodes were calibrated to the ferrocene/ferrocenium couple in THF at the end of each run to allow for any drift in potential, following IUPAC recommendations.² All electrochemical measurements were performed at ambient temperatures under an inert N2 atmosphere in THF containing the complex under study (1.4 mM) and the supporting electrolyte [n-Bu₄N][PF₆] (0.13 M). Data were recorded with Autolab NOVA software (v. 1.11). Thermogravimetric analysis was performed by the Microanalysis Laboratory at the University of Manchester. Elemental analyses were performed by the Microanalysis Laboratory at the University of Manchester. Mass spectrometry data were obtained by the Mass Spectrometry Laboratory at the University of Manchester. Thermogravimetric analysis was performed with a TA Instruments SDT650 simultaneous thermal analyser under a stream of nitrogen.

Experimental.

Au1: ¹H NMR (500 MHz, CD₂Cl₂)

Au1: ¹³C{¹H} NMR (126 MHz, CD₂Cl₂)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Au2: ¹H NMR (500 MHz, CD₂Cl₂)

Au2: ¹³C{¹H} NMR (125 MHz, CD₂Cl₂)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Au2: HMBC ¹H:¹³C{¹H} NMR (CD₂Cl₂)

Synthesis of 4-((trimethylsilyl)ethynyl)-2,1,3-benzothiadiazole (L(TMS)1)

A bomb flask was charged with 4-bromo-2,1,3-benzothiadiazole (2.00 g, 9.30 mmol), CuI (17.7 mg, 93.0 µmol) and Pd(PPh₃)₂Cl₂ (65.3 mg, 93.0 µmol) followed by addition of dry THF (45 mL), *i*Pr₂NH (45 mL, 321 mmol) and (CH₃)₃SiC₂H (9.01 mL, 65.1 mmol). The resulting suspension was left to stir overnight at 90°C. The reaction mixture was quenched with H₂O (200 mL) and the product extracted with EtOAc (200 mL). The organic phase was dried with excess MgSO₄ and filtered. The product was purified via column chromatography (eluent 19:1 hexane:EtOAc). All volatiles were evaporated under reduced pressure to give the product as an orange oil that forms orange crystals on standing in 73% yield (1.57 g, 6.76 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.8 Hz, 1H, BTD), 7.71 (d, *J* = 6.9 Hz, 1H, BTD), 7.49 (pseudo t, *J* = 8.4 Hz, 1H, BTD), 0.31 (s, 9H, TMS). ¹³C NMR (126 MHz, CDCl₃) δ 154.52 (<u>C</u>=N BTD, 2xC overlap), 133.55 (BTD), 129.07 (BTD), 122.15 (BTD), 116.99 (BTD), 101.63 (C=C), 100.15 (C=C), 0.04 (TMS). IR (ATR, cm⁻¹): 2156 (C=C). HRMS C₁₁H₁₂N₂SSi theoretical [M-H]⁺ = 233.0563; HRMS APCI(ASAP) = 233.0561.

L(TMS)1: ¹H NMR (500 MHz, CDCl₃)

L(TMS)1: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Synthesis of 4-ethynyl-2,1,3-benzothiadiazole (L1)

L(TMS)1 (1.10 g, 4.73 mmol) was deprotected by addition of dry THF (15 mL) followed by TBAF (14.2 mL, 14.2 mmol). The reaction mixture was left to stir for 1 h at room temperature. The solution was quenched with dilute HCl (4 wt%, 100 mL) resulting in a colour change from dark green to orange. The solution was washed twice with H₂O (200 mL) and extracted with EtOAc (200 mL). The organic phase was separated, dried over excess MgSO₄, and filtered. All volatiles were evaporated to give the product as a pale brown crystalline product in 94% yield (709 mg, 4.43 mmol). ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.8 Hz, 1H, BTD), 7.80 (d, *J* = 6.8 Hz, 1H, BTD), 7.58 (dd, *J* = 8.8, 7.0 Hz, 1H, BTD), 3.59 (s, 1H, C=C-<u>H</u>). ¹³C NMR (126 MHz, CDCl₃) δ 154.86 (<u>C</u>=N BTD), 154.58 (<u>C</u>=N BTD), 133.84 (BTD), 129.18 (BTD), 122.76 (BTD), 116.05 (BTD), 83.68 (C=C), 79.29 (C=C). IR (ATR, cm⁻¹): 2103 (C=C), 3336 (C=<u>C</u><u>H</u>). HRMS C₈H₄N₂S theoretical [M-H]⁺ = 161.0168; HRMS APCI(ASAP) = 161.0170.

L1: ¹H NMR (500 MHz, CDCl₃)

L1: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Synthesis of 4,7-di(trimethylsilyl)ethynyl-2,1,3-benzothiadiazole (L(TMS)2)

A bomb flask was charged with 4,7-dibromo-2,1,3-benzothiadiazole (2.00 g, 6.80 mmol), CuI (25.9 mg, 136 μ mol) and Pd(PPh₃)₂Cl₂ (95.5 mg, 136 μ mol) followed by addition of dry THF (45 mL), *i*Pr₂NH (45 mL, 321 mmol) and (CH₃)₃SiC₂H (13.2 mL, 95.3 mmol). The resulting suspension was left to stir overnight at 90°C. The reaction mixture was quenched with H₂O (200 mL) and the product extracted with EtOAc (200 mL). The organic phase was dried with excess MgSO₄ and filtered. The product was purified via column chromatography (eluent 9:1 hexane:EtOAc). All volatiles were evaporated under reduced pressure to give the product as a dark brown crystalline solid in 95% yield (2.13 g, 6.48 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.70 (s, 2H, BTD), 0.33 (s, 18H, TMS). ¹³C NMR (126 MHz, CDCl₃) δ 154.36 (<u>C</u>=N BTD), 133.30 (BTD), 117.41 (BTD), 103.79 (C=C), 100.13 (C=C), 0.04 (TMS). IR (ATR, cm⁻¹): 2154 (C=C). HRMS C₁₆H₂₀N₂SSi₂ theoretical [M-H]⁺ = 329.0958; HRMS APCI(ASAP) = 329.0960.

L(TMS)2: ¹H NMR (500 MHz, CDCl₃)

L(TMS)2: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Synthesis of 4,7-diethynyl-2,1,3-benzothiadiazole (L2)

L(TMS)2 (1.10 g, 3.35 mmol) was deprotected by addition of dry THF (15 mL) followed by TBAF (20.1 mL, 20.1 mmol). The reaction mixture was left to stir for 1 h at room temperature. The solution was quenched with dilute HCl (4 wt%, 100 mL). The solution was washed twice with H₂O (200 mL) and extracted with EtOAc (200 mL). The organic phase was separated, dried over excess MgSO₄, and filtered. All volatiles were evaporated to give the product dark brown crystalline solid in 80% yield (490 mg, 2.66 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.77 (s, 2H, BTD), 3.68 (s, 2H, C=C-<u>H</u>). ¹³C NMR (126 MHz, CDCl₃) δ 154.50 (<u>C</u>=N BTD), 133.39 (BTD), 116.91 (BTD), 85.49 (C=C), 79.07 (C=C). IR (ATR, cm⁻¹): 2105 (C=C), 3356 (C=<u>C</u>-<u>H</u>). HRMS C₁₀H₄N₂S theoretical [M-H]⁺ = 185.0168; HRMS APCI(ASAP) = 185.0171.

L2: ¹H NMR (500 MHz, CDCl₃)

L2: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Thermogravimetric Analysis.

Figure S1. TGA curves for Au1 and Au2. Decomposition temperature (Td) indicates the temperature at 5% weight loss.

Single Crystal X-ray Crystallography.

Crystals suitable for x-ray diffraction study were obtained by slow layer diffusion of hexane into DCM solution at room temperature for **Au1**. Crystals were mounted in oil on glass fiber and fixed on the diffractometer in a cold nitrogen stream. Data was collected using XtaLAB AFC11 (RINC): quarter-chi single diffractometer at 100 K. Data was processed using the CrystAlisPro-CCD and –RED software.^{3,4} The 4-ethynyl-2,1,3-benzothiadiazole moiety for complex **Au1** was disordered over two half-populated positions. Multi-scan absorption correction was applied for all crystals. Structures were solved by direct method/intrinsic phasing and refined by the full-matrix least-squares against F² in an anisotropic (for nonhydrogen atoms) approximation. All hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms with C-H = 0.95-1.00 Å, and U_{iso} = 1.2–1.5 U_{eq} (parent atom). All calculations were performed using the SHELXL software⁵ and Olex2 graphical user interface.⁶

Principal Crystallographic Data for Au1.

CCDC number: 2351761. $C_{32}H_{40}AuN_3S$ (*M*=695.69 g/mol), monoclinic, space group P2₁/n (no. 14), *a* = 11.4448(2) Å, *b* = 19.0140(2) Å, *c* = 14.1942(2) Å, *β* = 108.1460(10)°, *V* = 2935.20(7) Å³, *Z* = 4, *T* = 100.00(12) K, µ(Mo Kα) = 5.108 mm⁻¹, *D_{calc}* = 1.574 g/cm³, 87255 reflections measured (3.702° ≤ 2 Θ ≤ 56°), 7084 unique (*R*_{int} = 0.0301, R_{sigma} = 0.0135) which were used in all calculations. The final *R*₁ was 0.0360 (I > 2 σ (I)) and *wR*₂ was 0.0878 (all data).

Cyclic Voltammetry.

Figure S2. Full range cyclic voltammograms for **Au1** and **Au2**. Recorded using a glassy carbon electrode in THF solution (1.4 mM) with [*n*-Bu₄N]PF₆ as supporting electrolyte (0.13 M), scan rate 0.1 V s⁻¹.

Table S1. Formal electrode potentials (peak position E_p for irreversible and $E_{1/2}$ for quasireversible processes (*), V, vs. FeCp₂), onset potentials (E, V, vs. FeCp₂), peak-to-peak separation in parentheses for quasi-reversible processes (ΔE_p in mV), E_{HOMO}/E_{LUMO} (eV) and band gap values (ΔE , eV) for the redox changes exhibited by **Au1** and **Au2**.^{*a*}

Complex	Red	uction	E _{LUMO}	Oxi	dation	E _{HOMO}	ΔE
	E _{1st}	E _{onset red}	eV	E _{1st}	E _{onset ox}	eV	eV
Au1	-2.02* (146)	-1.93	-3.46	+1.06	+0.84	-6.23	2.77
Au2	-1.99* (149)	-1.91	-3.48	+0.76	+0.56	-5.95	2.47

^{*a*} In THF solution, recorded using a glassy carbon electrode, concentration 1.4 m*M*, supporting electrolyte [*n*-Bu₄N][PF₆] (0.13 M), measured at 0.1 V s⁻¹. $E_{HOMO} = -(E_{onset ox Fc/Fc+} + 5.39)$ eV; $E_{LUMO} = -(E_{onset red Fc/Fc+} + 5.39)$ eV (*Adv. Mater.* **2011**, *23*, 2367–2371).

Photophysical Characterisation.

UV-visible absorption spectra were recorded using a Varian Cary 5000 UV-Vis-NIR spectrometer. Photoluminescence measurements were recorded on an Edinburgh Instruments FLS-980 spectrometer with a solids mount attachment where appropriate. Absolute photoluminescence quantum yields were recorded using Hamamatsu Quantaurus-QY C11347-11. Quantum yields have been measured in air for solid samples and under nitrogen for solutions. Time resolved luminescence data were collected on a time-correlated single photon counting (TCSPC) Edinburgh Instruments FLS-980 spectrometer using F-900 software. A xenon flash lamp and EPL pulsed diode lasers were used as excitation sources. The collected data were analysed using F-900 software.

Two-photon absorption (2PA) measurements were performed at NanoMultiPhot (Institute of Molecular Science, Bordeaux university, Talence, France). The 2P were conducted on deaerated solutions of Au1 and Au2 in toluene (C= 0.45 mM and 0.17 mM respectively) by two-photon excited fluorescence (TPEF), using fluorescein in aqueous NaOH (C= 0.22 mM, pH= 11.0) as two-photon reference.^[7-8] The two-photon absorption experimental setup was measured using the well-established method described by Xu and Webb.^[8] An Ultra II (Coherent) femtoseconds pulsed laser (repetition rate: 80 MHz, pulsed width: 150 fs) was focalised on samples or fluorescein solutions using an air Olympus objective (10x, 0.25 NA) under magnetic stirring. Excitation wavelength was tuned in the range 680-960 nm (Au1) or 680-1000 nm (Au2). The 1 cm quartz cuvette was set in order to have the fluorescence generated on the close vicinity of the wall of the cuvette to limit reabsorption of fluorescence. The fluorescence is then collected in epifluorescence and filtered from back-scattered laser using a dichroic mirror (675dcxru, Chroma) and finally send to a fast spectrophotometer (MayaPro, OceanInsight) by the mean of an optical fiber. The power of the laser is tuned using a polarizer at Brewster's angle (142013, Layertec) in tandem with a rotating halfwave plate. The power is measured in real time by sending a part of the laser beam on a silicon photodiode (S142CL with power meter interface PM101U, both from Thorlabs) using a beam splitter (UFBS5050, Thorlabs). Quadraticity of the TPEF signals is evaluated checking the quadratic dependence of fluorescence to the laser power. The full programs used for TPEF measurements and analysis are available on github.^[9] The two-photon brightness $\sigma_2 \Phi$ of samples were calculated using equation 2.

$$\sigma_2 \Phi = \sigma_2 \Phi_{ref} * \left(\frac{n}{n_{ref}}\right)^2 * \frac{C_{ref}}{C} * \left(\frac{\int Fluo. int.}{P^2} / \frac{\int Fluo. int. _{ref}}{P_{ref}^2}\right) * \frac{\eta_{ref}}{\eta}$$

Equation 1. Calculation of two-photon brightness $\sigma_2 \Phi$.

Where n is the refractive index, C the concentration, P the laser power, $\int Fluo.int$. The fluorescence intensity and η the spectral correction of the sample and reference (c.a. ref).

UV-Vis and Photoluminescence Spectra

Figure S3. UV-vis spectra for L1 and Au1 (a); L2 and Au2 (b) in MCH solution. UV-vis absorption spectra of Au1 (c) and Au2 (d) in various solvents at 295 K.

ESI for Highly Fluorescent Carbene-Metal-Acetylide Gold Complexes with Efficient OLEDs and 2-Photon Absorption

Figure S4. Photoluminescent spectra and emissive lifetimes of Au1 (left) and Au2 (right) in various solvents at 295K.

Figure S5. Photoluminescent spectra of Au1 (left) and Au2 (right) in MCH at 295K and 77K.

Figure S6. Photoluminescent spectra of Au1 (left) and Au2 (right) in MCH at 295K and 77K.

	λ _{em} (nm)	τ (ns)	Ф (%) ^а	k_r $(10^7 s^{-1})^b$	k_{nr} $(10^6 \mathrm{s}^{-1})^{\mathrm{c}}$	S1 (eV) ^d	λ _{em} (nm, 77K)	τ (ns, 77K)
MCH Solution	on							
Au1	455	10.3	> 99	9.71	_	3.00	440	8.26
Au2	508	8.04	93	11.6	8.71	2.87	483	6.91

Table S2. Photophysical properties of complexes Au1 and Au2 in methylcyclohexane (MCH).

^{*a*} Quantum yields determined using an integrating sphere; ^{*b*}radiative rate constant $k_r = \Phi/\tau$; ^{*c*} Nonradiative constant $k_{nr} = (1 - \Phi)/\tau$. In case of two-component lifetime τ an average was used: $\tau_{av} = (B_1/(B_1 + B_2))\tau_1 + (B_2/(B_1 + B_2))\tau_2$, where B_1 and B_2 are the relative amplitudes for τ_1 and τ_2 , respectively; ^{*d*} S1 energies based on the onset values of the emission spectra blue edge at 77 K and 295 K.

Table S3. Photophysical properties of complexes Au1 and Au2 together with corresponding ligands L1 and L2 in argon saturated toluene solution.

Compound	$\lambda^{abs, max}$	ε ^{max}	$\lambda^{em, max}$	фa	$2.\lambda^{abs, max}$	$\lambda^{2PA, max}$	σ_2^{max}
Compound	nm	M ⁻¹ .cm ⁻¹	nm	Ψ_{f} "	nm	nm	GM
Au1	391	3 400	458	> 0.99	782	800	0.8
T 1	382	6 800		> 0.00	761	740	1
LI	447	500	444	> 0.99	/04	/40	1
A 2	356	10 700	516	>0.00	712	720	90
Au2	445	17 500	510	~0.99	890	820	2
I 1	420	14 400	167	0.79	840	730	23
L2	447	12 800	40/	0.78	894	880	3

^{*a*} Luminescence quantum yield measured with fluorescein in NaOH_{aq.} (0.1 M, $\Phi_f = 0.9$) as reference.

2-Photon Absorption

Figure S7. Variable power 2-photon absorption fluorescence spectra of Au1 (top left) and Au2 (top right) in MCH solutions. Linear fit plot of log_{10} (laser power) to log_{10} (PL intensity) with gradients at different power readings from 20 to 100 mW for Au1 (bottom left) and Au2 (bottom right) in MCH solutions.

ESI for Highly Fluorescent Carbene-Metal-Acetylide Gold Complexes with Efficient OLEDs and 2-Photon Absorption

Figure S8. Two-photon brightness (red: experimental, black: smooth) and quadraticity check (Log(F)/Log(P²)) for complexes **Au1** (left) and **Au2** (right) in solutions in deaerated toluene.

Figure S9. Fluorescence spectra of **Au1** in a Zeonex 1wt% film one-photon excited PL (blue) and two-photon excited PL (green).

25

ESI for Highly Fluorescent Carbene-Metal-Acetylide Gold Complexes with Efficient OLEDs and 2-Photon Absorption

Figure S10. Excited state lifetime traces measured by Time Correlated Single Photon Counting (TSCPC, black) and Instrument Response Function (red) in methylcyclohexane (MCH) solution for complexes **Au1** at 295K (a) and at 77K (b); **Au2** at 295K (e) and at 77K (f); in 1 wt% Zeonex films for **Au1** at 295K (c) and at 77K (d); **Au2** at 295K (g) and at 77K (h).

Computational Calculations

The ground states of the complexes were studied by density functional theory (DFT) and the excited states by time-dependent DFT (TD-DFT) using the Tamm-Dancoff approximation.^{10,11} Calculations were carried by the global hybrid MN15 functional of the Minnesota series by Truhlar and coworkers, which has especially good performance for noncovalent interactions and excitation energies.¹² The def2-TZVP basis set^{13,14} was employed with relativistic effective core potential of 60 electrons for description of the core electrons of Au.¹⁵ In TD-DFT spin-orbit coupling calculations,¹⁴ an all-electron scalar relativistic SARC-ZORA-TZVP basis set¹⁷ was used for Au. We have previously employed the selected methodology with success for closely related molecules.^{18,19} HOMO-LUMO overlap integrals and metal contribution in HOMO and LUMO have been calculated using Multiwfn program.²⁰ The TD-DFT spin-orbit coupling calculations were carried out by Orca 5.0.3,²¹ and all the other calculations using Gaussian 16.²²

Table S4. Optimised gas phase structures and molecular orbital distribution of the HOMO (middle) and LUMO (right) for complexes Au1 and Au2 involved in vertical excitation ($S_0 \rightarrow S_1$), including the contributions of the metal orbitals.

	НОМО	LUMO
Au1 Overlap integral: 0.68	5.8%Au	3.8%Au
Au2 Overlap integral: 0.67	3.0%Au	3.8%Au

	S_0	$S_1 @ S_0$	$S_2 @ S_0$	$S_3 @ S_0$
Aul	A A A	X	X	A A A
	T.	\downarrow	$\overrightarrow{\nabla}$	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
	9.0D	11.1D	8.9D	5.4D
Au2	XX	XX	ANA A	X
	1 the	TP .	The second	A B
	X	X	X	X
	4.5D	2.3D	2.5D	2.0D

Table S5. Dipole moments of S_0 and S_n states in S_0 geometry.

Table S6. Theoretically calculated S_n and T_n energy levels, orbital contributions to vertical excitations ($S_0 \rightarrow S_n$ and $S_0 \rightarrow T_n$) and oscillator strength coefficients for complexes Au1 and Au2.

	Excitation energy	Character	Oscillator strength
Aul	S_1 (mixed ¹ CT and ¹ LE(A)): 3.41eV = 364nm	HOMO – LUMO (94%)	0.3963
	S_2 (mixed ¹ CT and ¹ LE(A)): 3.68eV =	HOMO-1 – LUMO (58%) HOMO – LUMO+1 (30%)	0.0097
	S_3 (mixed ¹ CT and ¹ LE(A)): 3.79eV =	HOMO - LUMO + 1 (56%) HOMO - 1 - LUMO (31%)	0.0140
	T_1 (³ LE(A)): 2.34eV = 530nm	HOMO – LUMO (83%)	
	T_2 (³ LE(A)): 3.42eV = 362nm T_2 (mixed ³ CT and ³ LE(A)): 3.52eV =	HOMO-3 - LUMO (69%) HOMO - LUMO+1 (53%)	
	352nm		
	$T_4 (^{3}LE(C+M)): 3.55eV = 349nm$	HOMO-2 – LUMO+1 (42%)	
		(4276) HOMO-1 – LUMO (17%)	
Au2	S_1 (mixed ¹ CT and ¹ LE(A)): 2.94eV = 421nm	HOMO – LUMO (91%)	0.9733
	S_2 (¹ CT): 3.39eV = 365nm	HOMO – LUMO+1 (83%)	0.0021
	S_3 (mixed ¹ CT and ¹ LE(A)): 3.41eV =	HOMO – LUMO+2 (84%)	0.0225
	364nm		
	$T_1(^{3}LE(A)): 1.99eV = 624nm$	HOMO – LUMO (76%)	
	T_2 (mixed ³ CT and ³ LE(A)): 3.20eV =	HOMO – LUMO+2 (67%)	

387nm		
T_3 (³ CT): 3.20eV = 387nm	HOMO – LUMO+1 (75%)	
T_4 (³ LE(A)): 3.43eV = 361nm	HOMO-6 – LUMO (59%)	
	HOMO-6 – LUMO+2	
	(27%)	

A: Acetylide ligand; M: Metal; C: Carbene ligand

Table S7. Natural transition orbitals for S_n and T_n states of gold complexes Au1 and Au2 (n = 1, 2, 3).

		HONTO	LUNTO
Aul	S ₁		
	S ₂		
	S ₃		
	T ₁		
	T ₂		

T₃ T_4 Au2 \mathbf{S}_1 S_2

ESI for Highly Fluorescent Carbene-Metal-Acetylide Gold Complexes with Efficient OLEDs and 2-Photon Absorption

 S_3 T_1 T_2 T_3

ESI for Highly Fluorescent Carbene-Metal-Acetylide Gold Complexes with Efficient OLEDs and 2-Photon Absorption

Table S8. Spin orbit coupling matrix elements (SOCME, cm⁻¹) between triplet and singlet states for complexes Au1 and Au2.

	Stat	te	Component		
	Т	S	Z	Х	Y
Au1	1	0	-5.73	7.16	-11.17
	1	1	2.59	27.92	5.40
	1	2	-24.54	75.75	-29.06
	2	0	21.20	-11.04	57.43
	2	1	-3.55	33.29	-2.74
	2	2	5.85	-52.84	8.11
Au2	1	0	0.00	-8.48	16.27
	1	1	5.63	0.00	0.00
	1	2	0.00	-14.67	-115.66
	2	0	221.70	0.00	0.00
	2	1	0.00	6.48	109.92
	2	2	60.03	0.00	0.00

Spin orbit coupling matrix elements (SOCME, cm^{-1}) between T_{1-10} and S_1 for complexes Au1 and Au2.

	State			Component		
	Т	S	Z	Х	Y	
Au1	1	1	2.59	27.92	5.40	
	2	1	-3.55	33.29	-2.74	
	3	1	-268.46	-196.10	-183.70	
	4	1	-43.08	137.66	-30.48	
	5	1	167.54	-296.24	132.25	
	6	1	-17.48	-164.59	-17.24	
	7	1	48.70	-20.28	22.65	
	8	1	-119.18	88.28	-95.13	
	9	1	47.52	50.49	34.74	
	10	1	-459.21	-120.28	-353.21	
Au2	1	1	5.63	0.00	0.00	
	2	1	0.00	6.48	109.92	
	3	1	0.35	0.00	0.00	
	4	1	0.00	-3.35	-61.45	
	5	1	-273.79	0.00	0.13	
	6	1	0.19	2.31	183.31	

7	1	0.00	6.38	301.84
8	1	-238.77	0.00	0.00
9	1	0.00	8.57	164.20
10	1	8.67	0.00	0.00

 Table S9. Mixed SOC-states for complexes Au1 and Au2.

	State	Energy /	Character ^a	Oscillator	Transition electric dipole moment			
		eV		strength	T ²	$T_{x}(au)$	$T_{y}(au)$	$T_{z}(au)$
Aul	0	0.00	S ₀ 100%					
	1	2.33	T ₁ 100%	0.0000	0.0000	0.0053	0.0015	0.0001
	2	2.33	T ₁ 100%	0.0000	0.0000	0.0020	0.0023	0.0006
	3	2.33	T ₁ 100%	0.0000	0.0001	0.0025	0.0039	0.0082
	4	3.36	T ₃ 46%	0.0190	0.2306	0.4802	0.0001	0.0042
			T ₂ 27%					
			T ₄ 14%					
	5	3.36	T ₃ 39%	0.0050	0.0612	0.2473	0.0077	0.0015
			T ₂ 36%					
			$T_4 20\%$					
	6	3.37	$S_1 47\%$	0.1894	2.2962	1.5150	0.0246	0.0195
			$T_3 26\%$					
		2.20	$1_{2}15\%$	0.0004	0.0052	0.0(10	0.0124	0.0240
	/	3.39	$1_2 8/\%$	0.0004		0.0618	0.0124	0.0348
	8	3.41	$1_2 58\%$	0.0001	0.0008	0.0273	0.0014	0.0021
	0	2 12	$1_3 30\%$	0.0929	0.0007	0.0007	0.0020	0.0169
	9	5.42	T ₂ 40%	0.0838	0.9997	0.9997	0.0050	0.0108
			S . 19%					
			$T_{4} 11\%$					
	10	3 43	$T_2 47\%$	0.0357	0.4255	0.6516	0.0305	0.0056
			T ₂ 20%		0.1200	0.0010	010202	0.00000
			T ₅ 13%					
			S ₁ 12%					
	11	3.46	T ₄ 79%	0.0007	0.0088	0.0846	0.0123	0.0389
			T ₂ 11%					
	12	3.47	T ₄ 60%	0.0001	0.0011	0.0334	0.0004	0.0016
			T ₅ 19%					
			T ₃ 10%					
	13	3.51	T ₄ 53%	0.0424	0.4927	0.7000	0.0108	0.0504
			T ₃ 27%					
	14	3.57	T ₅ 68%	0.0149	0.1699	0.3968	0.0146	0.1107
			$S_2 12\%$		0.1000	0.0100	0.0500	0.00.40
	15	3.62	$T_5 68\%$	0.0089	0.1008	0.3130	0.0529	0.0042
	10	2.65	$1_{3}12\%$	0.0002		0.0495	0.0026	0.0027
	10	3.05	$1_5 / 1\%$	0.0002	0.0024	0.0485	0.0036	0.0027
			$1_3 14\%$					
	17	3 60	S 67%	0.0032	0.0252	0.1826	0.0222	0.0265
	1/	5.09	T _c 15%	0.0032	0.0352	0.1020	0.0332	0.0203
	18	3 76	S ₂ 76%	0.0076	0.0828	0 2791	0.0688	0.0145
A112	0	0.00	S ₀ 100%	0.0070	0.0020	0.2771	0.0000	0.0175
1142		2.06	$T_1 100\%$	0.0000	0,0000	0,0000	0,0000	0.0013
	$\frac{1}{2}$	2.00	$T_1 100\%$	0.0000		0.0000	0.0000	0.0013
	1 4	1.2.00	1 1 100/0	1 0.0000	1.0.0000	1 0.0000	1 0.0000	0.0021

3	2.06	T ₁ 100%	0.0000	0.0001	0.0081	0.0074	0.0000
4	2.99	S ₁ 98%	0.9740	13.2955	0.0293	3.6462	0.0000
5	3.17	T ₂ 90%	0.0000	0.0001	0.0074	0.0033	0.0000
6	3.17	T ₂ 92%	0.0007	0.0085	0.0079	0.0918	0.0000
7	3.18	T ₂ 78%	0.0001	0.0009	0.0000	0.0000	0.0301
		T ₃ 17%					
8	3.18	T ₃ 93%	0.0000	0.0000	0.0000	0.0000	0.0052
9	3.19	T ₃ 77%	0.0000	0.0002	0.0000	0.0000	0.0129
		T ₂ 18%					
10	3.19	T ₃ 93%	0.0006	0.0072	0.0570	0.0630	0.0000
11	3.36	S ₂ 52%	0.0008	0.0097	0.0000	0.0000	0.0985
		T ₆ 31%					
		T ₅ 11%					
12	3.38	T ₅ 47%	0.0002	0.0020	0.0229	0.0379	0.0000
		S ₃ 36%					
13	3.40	T ₄ 52%	0.0000	0.0000	0.0010	0.0013	0.0000
		T ₆ 35%					
14	3.41	T ₄ 87%	0.0002	0.0027	0.0043	0.0515	0.0000
15	3.41	T ₅ 67%	0.0000	0.0000	0.0000	0.0000	0.0009
		T ₇ 13%					
16	3.41	T ₄ 88%	0.0000	0.0000	0.0000	0.0000	0.0031
17	3.42	T ₄ 48%	0.0000	0.0000	0.0003	0.0046	0.0000
		T ₆ 37%					
		T ₈ 10%					
18	3.43	T ₆ 28%	0.0009	0.0113	0.0126	0.1056	0.0000
		T ₅ 24%					
1.0		S ₃ 23%					
19	3.43	$T_6 42\%$	0.0000	0.0003	0.0000	0.0000	0.0184
		T ₅ 20%					
		$S_2 15\%$					
20	2.40	$1_8 15\%$	0.0000	0.0254	0.0000		0.1504
20	3.48	15 59%	0.0022	0.0254	0.0000	0.0000	0.1594
21	2.49	$S_2 24\%$	0.0225	0.2004	0.0020		
21	3.48	$1_{6}40\%$	0.0325	0.3804	0.0029	0.6167	0.0000
	1	33 33%					

^a >10% contributions

References

[1] F. Chotard, V. Sivchik, M. Linnolahti, M. Bochman, A. S. Romanov, Chem. Mater. 2020,32, 14, 6114–6122

[2] G. Gritzner, J. Kůta, *Electrochim. Acta*, 1984, 29, 869-873.

[3] Programs CrysAlisPro, Oxford Diffraction Ltd. Abingdon, UK, 2010.

[4] G. Sheldrick, Acta Cryst. C 2015, 71 (1), 3-8.

- [5] G. Sheldrick, Acta Cryst. A 2015, 71 (1), 3-8.
- [6] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl.
- *Cryst.* 2009, **42** (2), 339-341.
- [7] M. A. Albota, C. Xu, W. W. Webb, Appl. Opt., 1998, 37 (31), 7352.

[8] C. Xu, W. W. Webb, J. Opt. Soc. Am. B, 1996, 13 (3), 481.

[9] J. Daniel, website link:

https://github.com/LAGONteam/PyTwoPhotonExcitedFluorescence.

- [10] F. Furche and D. Rappoport, M. Olivuccim, Ed.; Elsevier: Amsterdam, 2005; 93–128.
- [11] G. M. J. Peach and D. J. Tozer, J. Phys. Chem. A, 2012, 116, 9783–9789.
- [12] H. S. Yu, X. He, S. L. Li and D. G. Truhlar, Chem. Sci., 2016, 7, 5032–5051.
- [13] F. Weigend, M. Häser, H. Patzelt and R. Ahlrichs, *Chem. Phys. Lett.*, 1998, 294, 143–152.
- [14] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297–3305.
- [15] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta*, 1990, 77, 123–141.

[16] B. de Souza, G. Farias, F. Neese, R. Izsák, J. Chem. Theory Comput. 2019, 15, 1896-1904.

[17] D. A. Pantazis, X.-Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 2008, 4, 908-919.

[18] F. Chotard, A. S. Romanov, D. L. Hughes, M. Linnolahti and M. Bochmann, *Eur. J. Inorg. Chem.*, 2019, 4234–4240.

[19] A. S. Romanov, S. T. E. Jones, Q. Gu, P. J. Conaghan, B. H. Drummond, J. Feng, F. Chotard, L. Buizza, M. Foley, M. Linnolahti, D. Credgington and M. Bochmann, *Chem. Sci.*, 2020, **11**, 435–446.

- [20] T. Lu and F. J. Chen, Comput. Chem., 2012, 33, 580–592.
- [21] F. Neese, WIREs Comput. Mol. Sci. 2022, 12, e1606.
- [22] Gaussian 16, Revision A.03, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,
- M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M.

Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian,

J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F.

Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J.

Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,

M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A.

Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N.

Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A P.

Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R.

Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox,

Gaussian, Inc., Wallingford CT, 2016.