Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Molecular insights into solid-state photochromism

in bulk and confined N-salicylidenes

Kieran Griffiths, Harry Brough, Ryan J. Bragg, Nathan R. Halcovitch, John M. Griffin*

Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom

Supporting Information

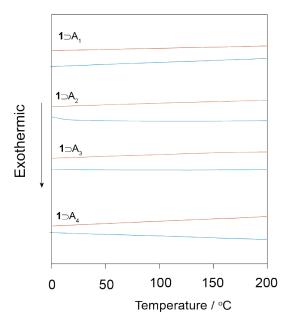
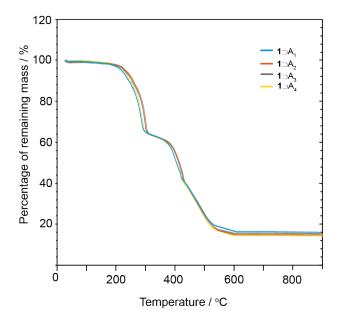



Figure S1. Differential scanning calorimetry traces of $1 \supset A_n$. Heating curves are shown in orange; cooling curves are shown in blue. No endothermic or exothermic features are observed which would be characteristic of melting or crystallisation of the crystalline N-salicylidenes. It can be assumed that excess N-salicylidene has been removed via vacuum treatment.

Figure S2. Thermogravimetric analysis traces of $1 \supset A_n$. Expected final mass for the general formula $1 \supset A_{n(0.5)}$ was calculated to be 15%-16% based on Al₂O₃. $1 \supset A_1$ (16.1%), $1 \supset A_2$ (15.8%), $1 \supset A_3$ (15.6%), and $1 \supset A_4$ (14.9%).

Table S1. Crystallographic and calculated geometry optimised parameters for other reported polymorphs of A_n compounds not used in this study.

	\mathbf{A}_1	A_1	A_2
Crystal System	Orthorhombic	Orthorhombic	Monoclinic
Space group	$P2_{1}2_{1}2_{1}$	$Pbc2_1$	$P2_1/c$
Z	4	4	4
Photochromic	Yes	No	No
Experimental torsion angle / °	45.4	6.6	2.3

Table S2. Comparison between calculated and experimental ¹³C imine chemical shifts at the experimental torsion angle.

Structure	Experimental torsion angle / °	Experimental ¹³ C imine chemical shift (ppm)	Calculated ¹³ C imine chemical shift at experimental torsion angle (ppm)
A_1	47.1	162.1	161.4
A_2	47.0	161.9	161.0
A_3	3.5	155.4	153.2
A_4	5.7	155.2	155.8

Table S3. Torsional angles for anil structures A_1 - A_4 , calculated by geometry optimisations with four methods. Fixed and unfixed refer to whether the unit cell parameters were allowed to relax during the geometry optimisation.

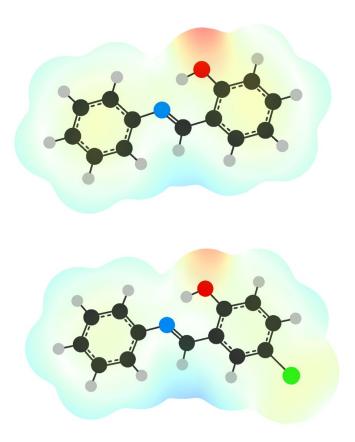
Method	A_1	A_2	A_3	A ₄
Experimental	47.1	47.0	3.5	5.7
PBE-D3 Fixed	45.6	43.9	10.7	7.8
PBE-D3 Unfixed	45.6	4.2	10.1	8.6
rSCAN Fixed	46.1	45.7	10.1	8.7
rSCAN Unfixed	46.0	45.7	11.4	9.0

Table S4. Calculated values of V_{free} for A_1 - A_4 and $1 \supset A_1 - 1 \supset A_4$

					V_{free} per
				$V_{ m free}$ per	molecule
	Volume of	Crystalline Unit Cell		molecule /	occluded within
Molecule	Molecule / Å ³	Volume / Å ³	Z	$ m \AA^3$	1

	279.4032	69.1	4	1023.38	186.73	\mathbf{A}_1
Vol	265.8632	82.9	4	1132.607	200.27	\mathbf{A}_2
ume of	265.8632	62.2	4	1049.972	200.27	A_3
the cavi	200.0032	32.5	8	2388.821	266.13	A_4

ty of $1 = 233.06 \text{ A}^3$. V_{free} per molecule was calculated using:


$$V_{\text{free}} = (V_{\text{cell}} - Z . V_{\text{molecule}})/Z$$

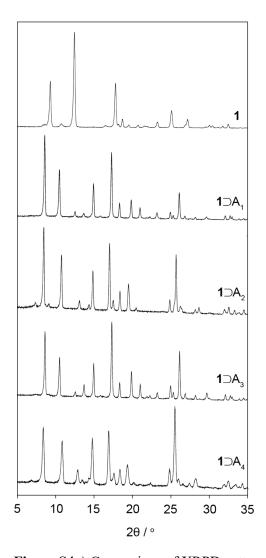
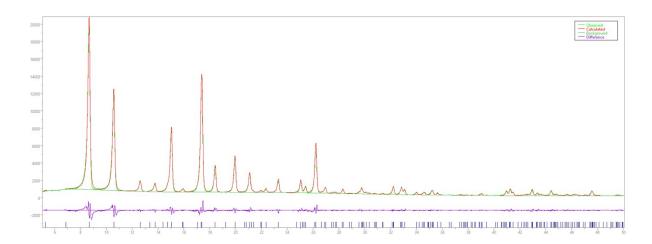
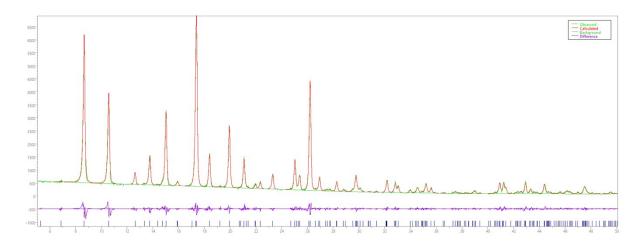
where $V_{\rm cell}$ is the unit cell volume and $V_{\rm molecule}$ is the volume of a single molecule.

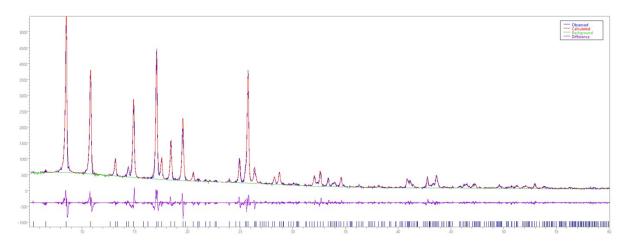
Table S5. Calculated 13 C chemical shieldings for A_1 and A_3 determined from single-molecule DFT calculations performed on fully optimised structures carbon sites numbered as shown in Figure 2 (main text).

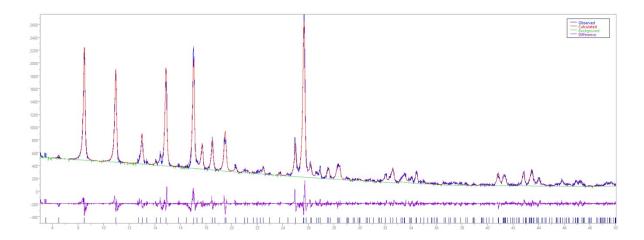
	A1	A3	
Site	Calculated ¹³ C chemical	Calculated ¹³ C chemical	Calculated ¹³ C chemical
	shielding (ppm)	shielding (ppm)	shielding difference
			(ppm)
C1	29.6	31.6	-2.0
C2	75.8	74.6	1.2
C3	59.9	59.9	0.0
C4	75.9	59.9	16.0
C5	60.3	61.6	-1.3
C6	72.8	72.2	0.6
C7	32.0	33.0	-1.0
C8	42.6	43.2	-0.6
C9	67.5	67.4	0.1
C10	64.1	64.0	0.1
C11	67.2	66.5	0.7
C12	63.8	63.7	0.1
C13	76.3	76.4	-0.1

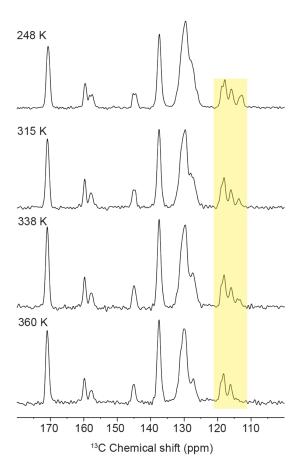
Torsional angles for fully optimised molecular structures are 34.0° (A₁) and 33.4° (A₃)

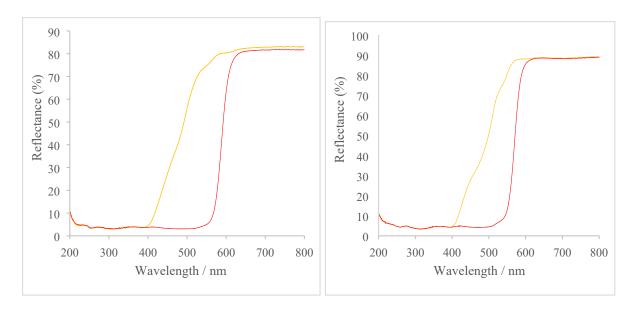
Figure S3. Electron density maps generated from single-molecule DFT calculations on A_1 (top) and A_3 (bottom). Atoms shown are carbon (black), nitrogen (blue), oxygen (red), hydrogen (grey) and chlorine (green).

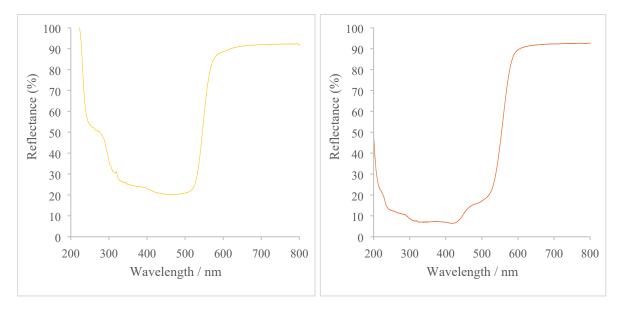




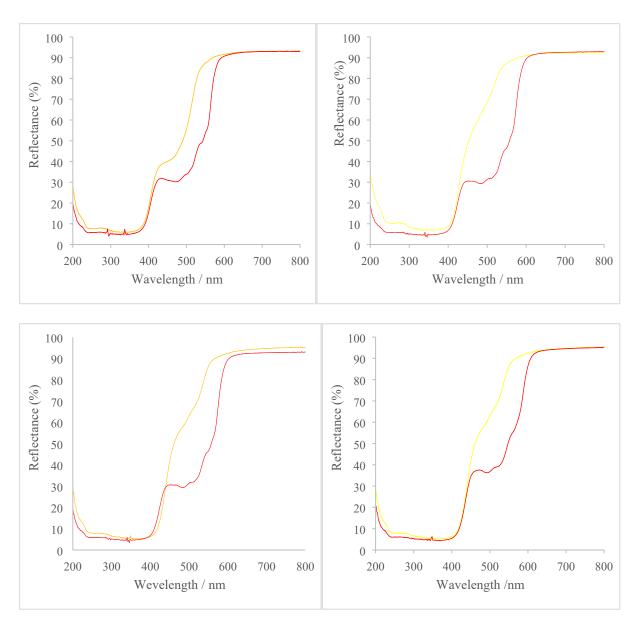

Figure S4a) Comparison of XRPD patterns of $1 \supset A_n$.


Figure S4b) Le Bail fit of $1 \supset A_1$. Indexing was carried out by N-TREOR09 on EXPO2014. The crystal system was found to be orthorhombic. The lattice parameters were refined to be, a = 12.87 Å, b = 16.71 Å and c = 6.62 Å Å, $\alpha = \beta = \gamma = 90^\circ$, V = 1423.7 Å³. The space group was found to be *Imma*. General formula $AlC_{84}H_{68}N_4O_{20}$. The reliability (*R*) factor based on the powder profile was 5.122 %.


Figure S4c) Le Bail fit of $1 \supset A_3$. Indexing was carried out by N-TREOR09 on EXPO2014. The crystal system was found to be orthorhombic. The lattice parameters were refined to be, a = 12.87 Å, b = 16.74 Å and c = 6.64 Å, $\alpha = \beta = \gamma = 90^\circ$, V = 1430.5 Å³. The space group was found to be *Imma*. General formula $AlC_{83}H_{68}N_4O_{20}Cl$. The reliability (*R*) factor based on the powder profile was 7.237 %.


Figure S4d) Le Bail fit of $1 \supset A_2$. Indexing was carried out by N-TREOR09 on EXPO2014. The crystal system was found to be orthorhombic. The lattice parameters were refined to be, a = 13.44 Å, b = 16.33 Å and c = 6.62 Å, $\alpha = \beta = \gamma = 90^\circ$, V = 1452.9 Å³. The space group was found to be *Imma*. General formula $AlC_{83}H_{68}N_4O_{20}Cl$. The reliability (*R*) factor based on the powder profile was 9.111 %.


Figure S4e) Le Bail fit of $1 \supset A_4$. Indexing was carried out by N-TREOR09 on EXPO2014. The crystal system was found to be orthorhombic. The lattice parameters were refined to be, a = 13.63 Å, b = 16.16 Å and c = 6.63 Å, $\alpha = \beta = \gamma = 90^\circ$, V = 1460.3 Å³. The space group was found to be *Imma*. General formula $AlC_{83}H_{68}N_4O_{20}Cl$. The reliability (*R*) factor based on the powder profile was 10.265 %.


Figure S5. Variable-temperature ¹³C CPMAS NMR spectra of $1\supset A_1$.

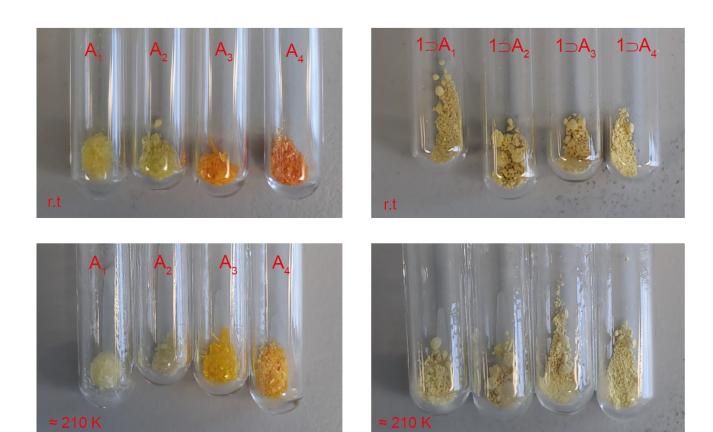

Figure S6. UV-vis reflectance spectra before irradiation (yellow) and after irradiation (red) of A_1 (left) and A_2 (right).

Figure S7. UV-vis reflectance spectra of bulk crystalline A_3 (left) and A_4 (right). UV-vis reflectance profiles remain the same after irradiation.

Figure S8. UV-vis reflectance spectra before irradiation (yellow) and after irradiation (red) of $1 \supset A_1$ (upper left), $1 \supset A_2$ (upper right), $1 \supset A_3$ (lower left), and $1 \supset A_4$ (lower right).

Figure S9. (Left) thermochromic properties of A_1 - A_4 at room temperature (top) and 210 K (bottom). (Right) thermochromic properties of $1 \supset A_1$ - $1 \supset A_4$ at room temperature (top) and 210 K (bottom).