Supplementary Information

Combinatorial synthesis and characterization of thin film $Al_{1-x}RE_xN$ (*RE* = Pr^{3+} and Tb^{3+}) heterostructural alloys

Binod Paudel,^{*a,b} John S. Mangum,^b Christopher L. Rom,^b Kingsley Egbo,^b Cheng-Wei Lee,^{a,b} Harvey Guthrey,^b Sean Allen,^b Nancy M. Haegel,^b Keisuke Yazawa,^{a,b} Geoff L. Brennecka^a and Rebecca W. Smaha^{*b}

^aDepartment of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, USA

^bNational Renewable Energy Laboratory, Golden, CO 80401, USA

Figure S1: Magnetron sputtering schematic for the high throughput combinatorial synthesis showing a compositional gradient from Al-rich to *RE*-rich regions of the film.

Figure S2: (a,b) Nitrogen composition vs. *RE* composition (*x*) measured with EPMA for (a) $Al_{1-x}Pr_xN$ and (b) $Al_{1-x}Tb_xN$ films across all detected phases.

	EDS (near substrate)	EDS (surface)	EPMA	
Al0.94Pr0.06N	Al0.94Pr0.06N0.92O0.08	Al0.94Pr0.06N0.49O0.23	Al0.94Pr0.06N0.98O0.30	
N/(N+O)	0.92	0.68	0.76	
Al0.85Pr0.15N	Al0.85Pr0.27N0.87O0.05	Al0.85Pr0.25N0.91O0.23	Alo.86Pro.14No.97Oo.25	
N/(N+O)	0.94	0.80	0.73	
Al0.92Tb0.08N	Al0.91Tb0.07N0.93O0.04	Al0.92Tb0.07N0.8O0.15	Al0.91Tb0.08N0.96O0.17	
N/(N+O)	0.96	0.84	0.83	
Al0.79Tb0.21N	Al0.75Tb0.23N0.86O0.15	Al0.76Tb0.2N0.78O0.35	Al0.76Tb0.23N0.97O0.09	
N/(N+O)	0.85	0.68	0.90	

Table S1: Comparison of overall stoichiometry and nitrogen composition extracted from STEM-EDS and EPMA

Figure S3: STEM-HAADF image and EDS elemental mapping at the Al *K*-peak, Pr *L*-peak, N *K*-peak, and O *K*-peak for Al_{0.85}Pr_{0.15}N on a pSi substrate, along with the EDS atomic % line profile.

Figure S4: STEM-HAADF image and EDS elemental mapping at the Al *K*-peak, Tb *L*-peak, N *K*-peak, and O *K* peak for Al_{0.79}Tb_{0.21}N on a pSi substrate, along with the EDS atomic % line profile.

Figure S5: STEM-EDS spectra from (a) Al_{0.94}Pr_{0.06}N and (b) Al_{0.85}Pr_{0.15}N films on pSi substrates, collected over the whole map area. The Al_{0.94}Pr_{0.06}N film was prepared with a W protective layer in the FIB, while Pt was used for the Al_{0.85}Pr_{0.15}N film. Mo and Cu are extraneous signals from the TEM sample holder and Ga is from the FIB processing.

Figure S6: Lab XRD data of (a) $Al_{1-x}Pr_xN$ films with *x* from 0.04 to 0.31 and (b) $Al_{1-x}Tb_xN$ films with *x* from 0.08 to 0.46.

Figure S7: (a,c) Integrated GIWAXS patterns of two amorphous points in (a) $Al_{1-x}Pr_xN$ and (c) $Al_{1-x}Tb_xN$. (b,d) The 2D detector images of one of the amorphous points of (b) $Al_{1-x}Pr_xN$ ($x\approx0.32$) and (d) $Al_{1-x}Tb_xN$ ($x\approx0.35$). (e,f) Additional 2D detector images of $Al_{1-x}Tb_xN$ films showing the (e) wz/wz+rs and (f) wz+rs/amorphous boundaries at $x\approx0.15$ and $x\approx0.28$ respectively.

Figure S8: LeBail fits of select GIWAXS data of (a) $Al_{1-x}Pr_xN$ in a phase-pure wurtzite structure with *x* from 0.04 to 0.08, and (b) $Al_{1-x}Tb_xN$ films in a phase-pure wurtzite structure with up to $x\approx 0.13$. Black dots are data, orange traces show overall fit (phase + background), green traces show the fit component from the wz phase, and the gray trace shows the difference between the data and the overall fit.

Figure S9: Lattice parameters extracted from LeBail fits of (a) $Al_{1-x}Pr_xN$ films, and (b) $Al_{1-x}Tb_xN$ films. In the phase-pure wurtzite regions of $Al_{1-x}Pr_xN$ (up to $x\approx0.22$) and $Al_{1-x}Tb_xN$ (up to $x\approx0.14$), the wurtzite *a* and *c* lattice parameters were extracted. In the mixed wz+rs phase region for $Al_{1-x}Tb_xN$ (0.15 $\leq x \leq 0.28$), both the wurtzite *a* and *c* lattice parameters and the rocksalt *a* lattice parameter were extracted.

Figure S10: (a,b) STEM-DF images and SAED patterns of $Al_{1-x}Pr_xN$ with (a) $x\approx 0.06$ and (b) $x\approx 0.15$. For $x\approx 0.06$, the SAED shows peaks from the wurtzite phase. For $x\approx 0.15$, the SAED shows a diffuse ring that lines up with the (002) d-spacing of the wurtzite phase. The outer ring denoted by the blue arc arises from the nanocrystalline Pt deposited during the FIB process. (c,d) STEM-BF images and fast Fourier transforms (FFTs) at two different regions of each STEM-BF image of $Al_{1-x}Tb_xN$ with (c) x=0.08 and (d) x=0.21. The FFTs indicate the presence of the wurtzite phase.

Transition	Reference Wavelength (nm)	Observed wavelength (nm)
$^{3}P_{0} \rightarrow ^{3}H_{4}$	490	—
$^{3}P_{1} \rightarrow ^{3}H_{5}$	526	527
$^{1}\text{D}_{2} \rightarrow {}^{3}\text{H}_{4}$	603	—
$^{3}P_{0} \rightarrow ^{3}F_{2}$	650	654
$^{3}P_{1} \rightarrow ^{3}F_{3}$	673	673
$^{3}P_{0} \rightarrow ^{3}F_{3}$	694	—
$^{1}\text{D}_{2} \rightarrow {}^{3}\text{H}_{5}$	696	—

Table S2: Reference CL peaks of Pr^{3+} compared with those observed in our measurements.

Table S3: Reference CL peaks of Tb³⁺ compared with those observed in our measurements.

Transition	Reference Wavelength (nm)	Observed wavelength (nm)
${}^{5}\mathrm{D}_{3} \rightarrow {}^{7}\mathrm{F}_{6}$	384	—
$^{5}D_{3} \rightarrow ^{7}F_{5}$	424	—
${}^{5}\mathrm{D}_{3} \rightarrow {}^{7}\mathrm{F}_{4}$	444	—
${}^{5}\mathrm{D}_{3} \rightarrow {}^{7}\mathrm{F}_{3}$	463	—
${}^{5}\mathrm{D}_{3} \rightarrow {}^{7}\mathrm{F}_{2}$	467	—
${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{6}$	496	492
$^{5}\mathrm{D}_{4} \rightarrow ^{7}\mathrm{F}_{5}$	551	554
$^{5}\mathrm{D}_{4} \rightarrow ^{7}\mathrm{F}_{4}$	587	589
$^{5}\mathrm{D}_{4} \rightarrow ^{7}\mathrm{F}_{3}$	626	627
${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{2}$	660	656