## Design of alkali lead oxybromides with strong second-harmonic

### generation response and large birefringence

Jialin Zeng<sup>a,b</sup>, Shuangcheng Li<sup>a</sup>, Yahui Zhu<sup>a</sup>, Zilong Geng<sup>a,d</sup>, Yiting Luo<sup>a,b</sup>, Ruibiao Fu<sup>\*</sup>a,d and Zuju Ma<sup>\*</sup>c

<sup>a</sup>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the

Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China

<sup>b</sup>College of Chemistry and Materials Science, Fujian Normal University, Fuzhou,

Fujian 350007, P. R. China

<sup>c</sup>School of Environmental and Materials Engineering, Yantai University, Yantai,

264005, P. R. China

<sup>d</sup>University of Chinese Academy of Sciences, Beijing 100049, China

\*Corresponding author. *E-mail addresses:* furb@fjirsm.ac.cn (R. B. Fu),

zjma@outlook.com (Z. J. Ma).

#### **Computational Details**

In the static case, the imaginary part of the static second-order optical susceptibility can be expressed as:

$$\chi^{abc} = \frac{e^3}{\hbar^2 \Omega} \sum_{nml,k} \frac{r_{nm}^a (r_{ml}^b r_{ln}^c + r_{ml}^c r_{ln}^b)}{2\omega_{nm} \omega_{ml} \omega_{ln}} [\omega_n f_{ml} + \omega_m f_{ln} + \omega_l f_{nm}] + \frac{ie^3}{4\hbar^2 \Omega} \\ \sum_{nm,k} \frac{f_{nm}}{\omega_{mn}^2} [r_{nm}^a (r_{mn;c}^b + r_{mn;b}^c) + r_{nm}^b (r_{mn;c}^a + r_{mn;a}^c) + r_{nm}^c (r_{mn;b}^a + r_{mn;a}^b)]$$

where *r* is the position operator,  $\hbar\omega_{nm} = \hbar\omega_n - \hbar\omega_m$  is the energy difference for the bands *m* and *n*,  $f_{mn} = f_m - f_n$  is the difference of the Fermi distribution functions, subscripts *a*, *b*, and *c* are Cartesian indices, and  $r^b_{mn;a}$  is the so-called generalized derivative of the coordinate operator in *k* space.

$$r_{nm;a}^{\ b} = \frac{r_{nm}^{\ a}\Delta_{mn}^{\ b} + r_{nm}^{\ b}\Delta_{mn}^{\ a}}{\omega_{nm}} + \frac{i}{\omega_{nm}} \times \sum_{l} (\omega_{lm}r_{nl}^{\ a}r_{lm}^{\ b} - \omega_{nl}r_{nl}^{\ b}r_{lm}^{\ a})$$

where  $\Delta^{a}_{nm} = (p^{a}_{nn} - p^{a}_{mm}) / m$  is the difference between the electronic velocities at the bands *n* and *m*.

The  $\chi^{(2)}$  coefficients here were calculated from PBE wave functions with a 3×5×5 (for **Rb<sub>3</sub>**[**Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)**])/5×3×5 (for **Cs<sub>3</sub>**[**Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)**]) k-point grid and about 512 bands. A scissor operator has been added to correct the conduction band energy (corrected to the experimental gap), which has been proved to be reliable in predicting the second-order susceptibility for semiconductors and insulators.[1-3]

For an external radiation electric field E, the dipole moment  $\mu_i$  of a group can be

expressed as a Taylor series expansion [4, 5]

$$\mu_{i} = \mu_{i}^{0} + \alpha_{ij}E_{j} + \frac{1}{2!}\beta_{ijk}E_{j}E_{k} + \frac{1}{3!}\gamma_{ijkl}E_{j}E_{k}E_{l}$$

where *i*, *j*, *k*, and *l* subscripts represent the different Cartesian coordinate components *x*, *y*, or *z*.  $\mu_i^0$  is the permanent dipole moment of a group, namely the dipole moment without an applied electric field. Physical quantities  $\alpha$ ,  $\beta$  and  $\gamma$  correspond to the linear polarizability ( $\alpha$ , which corresponds to the linear optical coefficient of a group), first-order hyperpolarizability tensor ( $\beta$ , which is the second-order nonlinear optical coefficient of a group), and second-order hyperpolarizability tensor ( $\gamma$ , which is the third-order nonlinear optical coefficient of a group).

We calculate the static linear polarizability ( $\alpha$ ) and static first-order hyperpolarizability ( $\beta$ ) of [PbBr<sub>4</sub>O<sub>2</sub>] and [OOC(CH<sub>2</sub>)<sub>3</sub>COO] groups at the PBE1PBE level [6] of theory with a reasonably large basis set def2TZVP [7,8] by using the Gaussian 09 program.[9] The polarizability anisotropy ( $\Delta \alpha$ ) was obtained by the following formula to reflect the sources of birefringence.[10]

$$\Delta \alpha = \sqrt{\left[ \left( \alpha_{xx} - \alpha_{yy} \right)^2 + \left( \alpha_{xx} - \alpha_{zz} \right)^2 + \left( \alpha_{yy} - \alpha_{zz} \right)^2 \right] / 2}$$

# . Tables and Figures

| Ta | able | <b>S1</b> . | Crysta | l data | and str | ructure | e refine | ement | s foi | r Rb | 3[P] | b <sub>2</sub> Br | 5 <b>(O</b> | OC( | CH <sub>2</sub> ) | 3 <b>C</b> C | <b>DO</b> ) | ]. |
|----|------|-------------|--------|--------|---------|---------|----------|-------|-------|------|------|-------------------|-------------|-----|-------------------|--------------|-------------|----|
|    |      |             |        |        |         |         |          |       |       |      |      |                   |             |     |                   |              |             |    |

| Empirical formula                              | Rb <sub>3</sub> [Pb <sub>2</sub> Br <sub>5</sub> (OOC(CH <sub>2</sub> ) <sub>3</sub> COO)] |  |  |  |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|
| Formula weight                                 | 1200.44                                                                                    |  |  |  |  |
| Temperature(K)                                 | 298(2)                                                                                     |  |  |  |  |
| Crystal color                                  | Colorless                                                                                  |  |  |  |  |
| Wavelength(Å)                                  | 1.54184                                                                                    |  |  |  |  |
| Crystal system                                 | Orthorthombic                                                                              |  |  |  |  |
| Space group                                    | Imm2                                                                                       |  |  |  |  |
| <i>a</i> / Å                                   | 20.9890(3)                                                                                 |  |  |  |  |
| b / Å                                          | 11.98510(10)                                                                               |  |  |  |  |
| <i>c</i> / Å                                   | 8.00740(10)                                                                                |  |  |  |  |
| α / °                                          | 90                                                                                         |  |  |  |  |
| β / °                                          | 90                                                                                         |  |  |  |  |
| γ / °                                          | 90                                                                                         |  |  |  |  |
| Volume / Å <sup>3</sup>                        | 2014.30(4)                                                                                 |  |  |  |  |
| Z                                              | 4                                                                                          |  |  |  |  |
| Absorption correction                          | multi-scan                                                                                 |  |  |  |  |
| Crystal size                                   | $0.3 \text{ mm} \times 0.1 \text{ mm} \times 0.1 \text{ mm}$                               |  |  |  |  |
| $ ho_{ m calcd}$ / g·cm <sup>-3</sup>          | 3.958                                                                                      |  |  |  |  |
| $\mu$ / mm <sup>-1</sup>                       | 52.558                                                                                     |  |  |  |  |
| F(000)                                         | 2072                                                                                       |  |  |  |  |
| Data / restraints / parameters                 | 1875/1/100                                                                                 |  |  |  |  |
| 2-Theta range for data collection              | 8.429 to 149.944                                                                           |  |  |  |  |
| Limiting indices                               | $-26 \le h \le 26, -14 \le k \le 15, -7 \le l \le 7$                                       |  |  |  |  |
| Reflections collected / unique                 | 9430/1875 [Rint=0.0453]                                                                    |  |  |  |  |
| Completeness                                   | 100%                                                                                       |  |  |  |  |
| Goodness-of-fit on F <sup>2</sup>              | 1.072                                                                                      |  |  |  |  |
| $R_1, wR_2 (I > 2\sigma)^{[a]}$                | $R_1 = 0.0293, wR_2 = 0.0818$                                                              |  |  |  |  |
| $R_1, wR_2$ (all data)                         | $R_1 = 0.0297, wR_2 = 0.0821$                                                              |  |  |  |  |
| Largest diff. peak and hole/ e·Å <sup>-3</sup> | 1.59 and -1.43                                                                             |  |  |  |  |
| Flack parameter                                | -0.027(11)                                                                                 |  |  |  |  |

<sup>[a]</sup> $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$  and  $wR_2 = [\Sigma w (Fo^2 - Fc^2)^2 / \Sigma w F_0^4]^{1/2}$ .

| Empirical formula                                     | Cs <sub>3</sub> [Pb <sub>2</sub> Br <sub>5</sub> (OOC(CH <sub>2</sub> ) <sub>3</sub> COO)] |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Formula weight                                        | 1342.76                                                                                    |
| Temperature(K)                                        | 293(2)                                                                                     |
| Crystal color                                         | Colorless                                                                                  |
| Wavelength(Å)                                         | 1.54184                                                                                    |
| Crystal system                                        | Orthorthombic                                                                              |
| Space group                                           | Amm2                                                                                       |
| <i>a</i> / Å                                          | 12.26789(19)                                                                               |
| b / Å                                                 | 21.5634(4)                                                                                 |
| <i>c</i> / Å                                          | 7.97808(15)                                                                                |
| α/°                                                   | 90                                                                                         |
| β/°                                                   | 90                                                                                         |
| γ / °                                                 | 90                                                                                         |
| Volume / Å <sup>3</sup>                               | 2110.50(6)                                                                                 |
| Z                                                     | 4                                                                                          |
| Absorption correction                                 | multi-scan                                                                                 |
| Crystal size                                          | $0.2 \text{ mm} \times 0.1 \text{ mm} \times 0.1 \text{ mm}$                               |
| $\rho_{\text{calcd}} / \text{g} \cdot \text{cm}^{-3}$ | 4.226                                                                                      |
| $\mu / \text{mm}^{-1}$                                | 81.548                                                                                     |
| F(000)                                                | 2288.0                                                                                     |
| Data / restraints / parameters                        | 2257/1/101                                                                                 |
| 2-Theta range for data collection                     | 7.206 to 149.536                                                                           |
| Limiting indices                                      | $-13 \le h \le 15, -20 \le K \le 26, -9 \le 1 \le 9$                                       |
| Reflections collected / unique                        | 10429/2257 [Rint=0.0575]                                                                   |
| Completeness                                          | 100%                                                                                       |
| Goodness-of-fit on F <sup>2</sup>                     | 1.067                                                                                      |
| $R_1, wR_2 (I > 2\sigma)^{[a]}$                       | $R_1 = 0.0462, wR_2 = 0.1164$                                                              |
| $R_1, wR_2$ (all data)                                | $R_1 = 0.0468, wR_2 = 0.1175$                                                              |
| Largest diff. peak and hole/ e·Å-3                    | 1.25 and -1.09                                                                             |
| Flack parameter                                       | -0.004(7)                                                                                  |

Table S2. Crystal data and structure refinements for  $Cs_3[Pb_2Br_5(OOC(CH_2)_3COO)]$ .

<sup>[a]</sup> $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$  and  $wR_2 = [\Sigma w (Fo^2 - Fc^2)^2 / \Sigma w F_0^4]^{1/2}$ .

| Atom Wyck. |    | x           | x Y         |             | $U_{ m eq}{}^{ m a}$ | <b>BVS</b> <sup>b</sup> |
|------------|----|-------------|-------------|-------------|----------------------|-------------------------|
| Pb1        | 8e | 0.35893(2)  | 0.2516(3)   | 0.31018(16) | 0.0241(2)            | 2.02                    |
| Rb1        | 2a | 0.5         | 0.5         | 0.396(3)    | 0.0285(5)            | 1.13                    |
| Rb2        | 2b | 0.5         | 0           | 0.5215(4)   | 0.0359(6)            | 0.98                    |
| Rb3        | 4c | 0.31151(13) | 0           | 0.7167(4)   | 0.0666(8)            | 0.79                    |
| Rb4        | 4c | 0.31014(10) | 0.5         | 0.7193(3)   | 0.0485(5)            | 0.82                    |
| Br1        | 4c | 0.35755(9)  | 0.5         | 0.1758(4)   | 0.0414(5)            | -0.82                   |
| Br2        | 8e | 0.23558(7)  | 0.26759(14) | 0.4736(2)   | 0.0447(4)            | -0.74                   |
| Br3        | 4c | 0.34955(11) | 0           | 0.2662(5)   | 0.0626(10)           | -1.03                   |
| Br4        | 4d | 0.5         | 0.21964(18) | 0.2375(3)   | 0.0329(4)            | -0.94                   |
| 01         | 8e | 0.3993(4)   | 0.1722(7)   | 0.5889(14)  | 0.038(2)             | -2.00                   |
| O2         | 8e | 0.4047(4)   | 0.3536(7)   | 0.5583(11)  | 0.031(17)            | -2.15                   |
| C1         | 8e | 0.4131(6)   | 0.2681(10)  | 0.642(18)   | 0.029(3)             |                         |
| C2         | 4d | 0.5         | 0.3454(12)  | 0.837(20)   | 0.034(4)             |                         |
| C3         | 8e | 0.4395(6)   | 0.2777(15)  | 0.819(30)   | 0.051(4)             |                         |

Table S3. Atomic coordinates, equivalent isotropic displacement parameters ( $Å^2$ ) and BVS for Rb<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].

 $^{a}U_{eq}\ is\ defined\ as\ 1/3$  of the trace of the orthogonalised  $U_{ij}\ tensor.$ 

<sup>b</sup>Bond valence sums were calculated by the equation:  $s = \exp [(R_0 - R_i)/b]$ , where  $R_0$  and b are the bond valence parameters and  $R_i$  is the observed bond lengths.

Table S4. Atomic coordinates, equivalent isotropic displacement parameters ( $Å^2$ ) and BVS for Cs<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].

| • .  |       |             | 2/0 /1      |            |                        | B T I G          |
|------|-------|-------------|-------------|------------|------------------------|------------------|
| Atom | Wyck. | x           | У           | z          | $U_{\rm eq}{}^{\rm a}$ | BVS <sup>b</sup> |
| Pb1  | 8f    | 0.24769(3)  | 0.3596(2)   | 0.5859(2)  | 0.0344(7)              | 1.90             |
| Cs1  | 4e    | 0.5         | 0.30754(8)  | 0.1727(2)  | 0.0482(8)              | 0.98             |
| Cs2  | 2b    | 0.5         | 0.5         | 0.5141(3)  | 0.0361(8)              | 1.47             |
| Cs3  | 4d    | 0           | 0.31582(9)  | 0.1386(3)  | 0.0604(9)              | 0.89             |
| Cs4  | 2a    | 0           | 0.5         | 0.3718(3)  | 0.0408(8)              | 1.22             |
| Br1  | 4e    | 0.5         | 0.35609(13) | 0.7121(5)  | 0.0523(10)             | -0.93            |
| Br2  | 8f    | 0.25203(12) | 0.24121(10) | 0.4125(4)  | 0.048(9)               | -0.94            |
| Br3  | 4d    | 0           | 0.3513(14)  | 0.6474(5)  | 0.058(11)              | -0.95            |
| Br4  | 4c    | 0.2193(2)   | 0.5         | 0.6636(3)  | 0.0397(8)              | -0.78            |
| 01   | 8f    | 0.3515(9)   | 0.405(6)    | 0.3402(16) | 0.039(2)               | -2.13            |
| O2   | 8f    | 0.1731(10)  | 0.3992(6)   | 0.3092(17) | 0.045(3)               | -1.89            |
| C1   | 8f    | 0.2632(13)  | 0.4132(7)   | 0.2580(20) | 0.032(3)               |                  |
| C2   | 8f    | 0.2761(18)  | 0.4405(8)   | 0.79(30)   | 0.048(3)               |                  |
| C3   | 4c    | 0.3417(15)  | 0.5         | 0.63(30)   | 0.038(4)               |                  |

 ${}^{a}U_{eq}$  is defined as 1/3 of the trace of the orthogonalisedU<sub>ij</sub> tensor.

<sup>b</sup>Bond valence sums were calculated by the equation:  $s = \exp [(R_0 - R_i)/b]$ , where  $R_0$  and b are the bond valence parameters and  $R_i$  is the observed bond lengths.

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U12          |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------|
| Pb1  | 0.0184(3)       | 0.0236(3)       | 0.0302(3)       | 0.00211(15)     | -0.0027(2)      | -0.00039(10) |
| Rb1  | 0.0227(8)       | 0.0251(9)       | 0.0378(13)      | 0.0000          | 0.0000          | 0.0000       |
| Rb2  | 0.0285(10)      | 0.0233(9)       | 0.0561(17)      | 0.0000          | 0.0000          | 0.0000       |
| Rb3  | 0.0568(13)      | 0.0407(11)      | 0.102(2)        | 0.0000          | 0.0433(14)      | 0.0000       |
| Rb4  | 0.0331(9)       | 0.0463(11)      | 0.0662(15)      | 0.0000          | 0.0102(9)       | 0.0000       |
| Br1  | 0.0433(10)      | 0.0274(8)       | 0.0535(13)      | 0.0000          | -0.0176(8)      | 0.0000       |
| Br2  | 0.0299(7)       | 0.0659(9)       | 0.0382(9)       | 0.0052(8)       | 0.0091(6)       | -0.0014(6)   |
| Br3  | 0.0426(9)       | 0.0230(8)       | 0.122(3)        | 0.0000          | -0.0266(13)     | 0.0000       |
| Br4  | 0.0217(7)       | 0.0449(9)       | 0.0322(9)       | 0.0037(9)       | 0.0000          | 0.0000       |
| O1   | 0.031(4)        | 0.032(4)        | 0.052(6)        | 0.008(4)        | 0.007(4)        | 0.001(3)     |
| O2   | 0.028(4)        | 0.034(4)        | 0.031(4)        | 0.003(4)        | -0.002(3)       | 0.002(3)     |
| C1   | 0.018(5)        | 0.038(6)        | 0.031(7)        | 0.007(5)        | 0.004(5)        | 0.000(4)     |
| C2   | 0.043(8)        | 0.024(6)        | 0.034(10)       | -0.006(7)       | 0.0000          | 0.0000       |
| C3   | 0.022(5)        | 0.101(11)       | 0.030(7)        | 0.030(11)       | 0.000(6)        | -0.006(6)    |

TableS5.Anisotropicdisplacementparameters(Ų)forRb3[Pb2Br5(OOC(CH2)3COO)].

| Table                              | <b>S6.</b>            | Anisotropic                           | displac         | ement           | parameters      | (Å <sup>2</sup> ) | for |
|------------------------------------|-----------------------|---------------------------------------|-----------------|-----------------|-----------------|-------------------|-----|
| Cs <sub>3</sub> [Pb <sub>2</sub> ] | Br <sub>5</sub> (OOC( | CH <sub>2</sub> ) <sub>3</sub> COO)]. |                 |                 |                 |                   |     |
| Atom                               | U <sub>11</sub>       | U <sub>22</sub>                       | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub>   |     |

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Pb1  | 0.0309(8)       | 0.0304(8)       | 0.042(8)        | 0.0001(3)       | 0.00097(18)     | 0.00093(13)     |
| Cs1  | 0.0412(10)      | 0.0411(10)      | 0.0623(12)      | -0.0056(6)      | 0.0000          | 0.0000          |
| Cs2  | 0.0294(9)       | 0.0305(10)      | 0.0486(12)      | 0.0000          | 0.0000          | 0.0000          |
| Cs3  | 0.0418(10)      | 0.054(11)       | 0.0852(17)      | -0.0247(9)      | 0.0000          | 0.0000          |
| Cs4  | 0.0268(9)       | 0.0355(11)      | 0.0599(13)      | 0.0000          | 0.0000          | 0.0000          |
| Br1  | 0.0419(14)      | 0.044(14)       | 0.071(2)        | 0.0186(11)      | 0.0000          | 0.0000          |
| Br2  | 0.0517(14)      | 0.04(12)        | 0.0523(13)      | -0.0091(9)      | 0.0029(6)       | -0.0007(5)      |
| Br3  | 0.0304(12)      | 0.0515(15)      | 0.092(3)        | 0.0167(14)      | 0.0000          | 0.0000          |
| Br4  | 0.0382(12)      | 0.0355(12)      | 0.0455(13)      | 0.0000          | -0.0023(10)     | 0.0000          |
| 01   | 0.031(4)        | 0.044(5)        | 0.043(5)        | 0.001(4)        | -0.001(4)       | 0.001(4)        |
| O2   | 0.039(5)        | 0.044(5)        | 0.052(6)        | -0.003(5)       | -0.008(5)       | 0.0000          |
| C1   | 0.043(7)        | 0.017(6)        | 0.035(8)        | -0.002(5)       | -0.013(5)       | 0.001(4)        |
| C2   | 0.075(9)        | 0.041(8)        | 0.029(7)        | 0.001(7)        | -0.013(10)      | -0.008(8)       |
| C3   | 0.032(8)        | 0.051(10)       | 0.032(9)        | 0.0000          | 0.007(7)        | 0.0000          |

| Table S7.                                           | Selected bond                            | lengths (Å) and           | angles (deg.) for |
|-----------------------------------------------------|------------------------------------------|---------------------------|-------------------|
| Rb <sub>3</sub> [Pb <sub>2</sub> Br <sub>5</sub> (O | OC(CH <sub>2</sub> ) <sub>3</sub> COO)]. |                           |                   |
| Pb(1)-O(1)                                          | 2.570(11)                                | Pb(1)-Br(2)               | 2.9074(16)        |
| Pb(1)-O(2)                                          | 2.523(9)                                 | Pb(1)-Br(3)               | 3.0423(6)         |
| Pb(1)-Br(1)                                         | 3.1657(11)                               | Pb(1)-Br(4)               | 3.0417(7)         |
| Rb(1)-Br(1)                                         | 3.471(2)                                 | Rb(3)-Br(1) <sup>#6</sup> | 3.564(3)          |
| $Rb(1)$ -Br $(1)^{\#1}$                             | 3.471(2)                                 | Rb(3)-Br(2)               | 4.076(3)          |
| Rb(1)-Br(4)                                         | 3.592(2)                                 | Rb(3)-Br(2) <sup>#5</sup> | 4.076(3)          |
| Rb(1)-Br(4) <sup>#1</sup>                           | 3.592(2)                                 | Rb(3)-Br(2) <sup>#6</sup> | 3.601(3)          |
| Rb(1)-O(2)                                          | 2.961(8)                                 | Rb(3)-Br(2)#7             | 3.601(3)          |
| Rb(1)-O(2) <sup>#1</sup>                            | 2.961(8)                                 | Rb(3)-Br(3)               | 3.695(5)          |
| Rb(1)-O(2) <sup>#2</sup>                            | 2.961(8)                                 | Rb(3)-O(1)                | 2.950(9)          |
| Rb(1)-O(2)#3                                        | 2.961(8)                                 | Rb(3)-O(1) <sup>#5</sup>  | 2.950(9)          |
| Rb(2)-Br(3)                                         | 3.762(3)                                 | Rb(4)-Br(1) <sup>#8</sup> | 3.789(4)          |
| Rb(2)-Br(3) <sup>#4</sup>                           | 3.762(3)                                 | Rb(4)-Br(2)               | 3.752(2)          |
| Rb(2)-Br(4)                                         | 3.479(3)                                 | Rb(4)-Br(2) <sup>#2</sup> | 3.752(2)          |
| Rb(2)-Br(4)#4                                       | 3.478(3)                                 | Rb(4)-Br(2) <sup>#7</sup> | 3.919(2)          |
| Rb(2)-O(1)                                          | 3.003(9)                                 | Rb(4)-Br(2) <sup>#9</sup> | 3.919(2)          |
| Rb(2)-O(1)#3                                        | 3.003(9)                                 | Rb(4)-Br(3) <sup>#7</sup> | 3.373(3)          |
| Rb(2)-O(1)#4                                        | 3.003(9)                                 | Rb(4)-O(2)                | 2.946(8)          |
| Rb(2)-O(1)#5                                        | 3.003(9)                                 | Rb(4)-O(2) <sup>#2</sup>  | 2.946(8)          |
| C(1)- O(1)                                          | 1.260(15)                                | C(1)- O(2)                | 1.237(15)         |
| O(1)-Pb(1)-Br(2                                     | 2) 85.8(2)                               | Br(1)-Pb(1)-Br(3)         | 153.15(10)        |
| O(1)-Pb(1)-Br(3                                     | 3) 75.8(2)                               | Br(1)-Pb(1)-Br(4)         | 93.57(6)          |
| O(1)-Pb(1)-Br(4                                     | ) 78.4(2)                                | Br(2)-Pb(1)-Br(3)         | 93.43(7)          |
| O(2)-Pb(1)-Br(1                                     | 79.36(19)                                | Br(2)-Pb(1)-Br(4)         | 163.99(7)         |
| O(2)-Pb(1)-Br(2                                     | 2) 87.28(19)                             | Br(3)-Pb(1)-Br(4)         | 85.18(6)          |
| O(2)-Pb(1)-Br(3                                     | 3) 126.6(2)                              |                           |                   |

Symmetry transformations used to generate equivalent atoms: #1 1 - x,1 - y, z; #2 x, 1 - y, z; #3 1 - x, y, z; #4 1 - x, - y, z; #5 x, - y, z; #6 1/2 - x, - 1/2 + y, 1/2 + z; #7 1/2 - x, 1/2 - y, 1/2 + z; #8 x, y, 1 + z; #9 1/2 - x, 1/2 + y, 1/2 + z.

| Table                            | <b>S8</b> .      | Selected                            | bond          | lengths | (Å)                   | and   | angles | (deg.) | for |
|----------------------------------|------------------|-------------------------------------|---------------|---------|-----------------------|-------|--------|--------|-----|
| Cs <sub>3</sub> [Pb <sub>2</sub> | $_{2}Br_{5}(OC)$ | OC(CH <sub>2</sub> ) <sub>3</sub> C | <b>00)]</b> . |         |                       |       |        |        |     |
| Pb(1)-O                          | (1)              | 2.5                                 | 34(12)        | Pb(     | 1)-Br(2)              |       | 2.904  | (2)    |     |
| Pb(1)-O                          | (2)              | 2.5                                 | 37(13)        | Pb(     | 1)-Br(3)              |       | 3.083  | 1(9)   |     |
| Pb(1)-B                          | r(1)             | 3.2                                 | 558(13)       | Pb(     | 1)-Br(4)              |       | 3.109  | 98(9)  |     |
| Cs(1)-B                          | r(1)#4           | 3.5                                 | 42(3)         | Cs(     | 3)-Br(2)              |       | 4.114  | (3)    |     |
| Cs(1)-B                          | $r(1)^{\#5}$     | 3.8                                 | 21(4)         | Cs(     | 3)-Br(2) $^{\#}$      | 6     | 3.785  | (2)    |     |
| Cs(1)-B                          | r(2)             | 3.8                                 | 68(2)         | Cs(     | $3)-Br(2)^{\#}$       | 8     | 4.114  | (3)    |     |
| Cs(1)-B                          | $r(2)^{\#3}$     | 3.8                                 | 68(2)         | Cs(     | 3)-Br(2)#             | 7     | 3.785  | (2)    |     |
| Cs(1)-B                          | r(2)#4           | 3.8                                 | 30(2)         | Cs(     | 3)-Br(3)              |       | 4.131  | (5)    |     |
| Cs(1)-B                          | $r(2)^{\#6}$     | 3.8                                 | 30(2)         | Cs(     | 3)-Br(3) $^{\#}$      | 5     | 3.993  | (5)    |     |
| Cs(1)-O                          | (1)              | 3.0                                 | 86(12)        | Cs(     | 3)-Br(3)#             | 7     | 3.604  | (4)    |     |
| Cs(1)-O                          | $(1)^{\#3}$      | 3.0                                 | 86(12)        | Cs(     | 3)-O(2)               |       | 3.098  | (12)   |     |
| Cs(2)-B                          | r(1)             | 3.4                                 | 82(3)         | Cs(     | 3)-O(2) <sup>#8</sup> |       | 3.098  | (12)   |     |
| Cs(2)-B                          | $r(1)^{\#2}$     | 3.4                                 | 82(3)         | Cs(     | 4)-Br(3)              |       | 3.888  | (3)    |     |
| Cs(2)-B                          | r(4)             | 3.6                                 | 44(3)         | Cs(     | 4)-Br(3) $^{\#}$      | 9     | 3.888  | (3)    |     |
| Cs(2)-B                          | $r(4)^{\#2}$     | 3.6                                 | 44(3)         | Cs(     | 4)-Br(4)              |       | 3.558  | (3)    |     |
| Cs(2)-O                          | (1)              | 3.0                                 | 72(12)        | Cs(     | 4)-Br(4)#             | 9     | 3.558  | (3)    |     |
| Cs(2)-O                          | $(1)^{\#1}$      | 3.0                                 | 72(12)        | Cs(     | 4)-O(2)               |       | 3.080  | (12)   |     |
| Cs(2)-O                          | $(1)^{\#2}$      | 3.0                                 | 72(12)        | Cs(     | 4)-O(2) $^{\#1}$      |       | 3.080  | (12)   |     |
| Cs(2)-O                          | $(1)^{\#3}$      | 3.0                                 | 72(12)        | Cs(     | 4)-O(2) <sup>#8</sup> |       | 3.080  | (12)   |     |
| C(1)- O(                         | (1)              | 1.2                                 | 77(19)        | Cs(     | 4)-O(2)#9             |       | 3.080  | (12)   |     |
| C(1)- O                          | (2)              | 1.2                                 | 2(2)          |         |                       |       |        |        |     |
| O(1)-Pb                          | (1)-O(2)         | 51.                                 | 6(4)          | O(2     | 2)-Pb(1)-H            | Br(4) | 78.8(  | 3)     |     |
| O(1)-Pb                          | (1)-Br $(1)$     | 76.                                 | 7(3)          | Br(     | 1)-Pb(1)-             | Br(2) | 96.29  | (7)    |     |
| O(1)-Pb                          | (1)-Br $(2)$     | 87.                                 | 8(3)          | Br(     | 1)-Pb(1)-             | Br(3) | 153.4  | 3(11)  |     |
| O(1)-Pb                          | (1)-Br $(3)$     | 129                                 | 9.8(3)        | Br(     | 1)-Pb(1)-             | Br(4) | 93.86  | (7)    |     |
| O(1)-Pb                          | (1)-Br $(4)$     | 80.                                 | 5(3)          | Br(     | 2)-Pb(1)-             | Br(3) | 92.45  | (8)    |     |
| O(2)-Pb                          | (1)-Br $(1)$     | 128                                 | 8.3(3)        | Br(     | 2)-Pb(1)-             | Br(4) | 162.3  | 2(9)   |     |
| O(2)-Pb                          | (1)-Br $(2)$     | 83.                                 | 6(3)          | Br(     | 3)-Pb(1)-             | Br(4) | 85.10  | (8)    |     |
| O(2)-Pb                          | (1)-Br $(3)$     | 78.                                 | 6(3)          |         |                       |       |        |        |     |

Symmetry transformations used to generate equivalent atoms: #1 x,1 - y, z; #2 1 - x, 1 - y, z; #3 1 - x, y, z; #4 1 - x, 1/2 - y, - 1/2 + z; #5 x, y, z - 1; #6 x, 1/2 - y, - 1/2 + z; #7 - x, 1/2 - y, - 1/2 + z; #8 - x, y, z; #9 - x, 1 - y, z.

| estimated by the bader charge of each atom.   |         |         |         |      |      |  |  |  |  |
|-----------------------------------------------|---------|---------|---------|------|------|--|--|--|--|
| Dipole moment                                 | $\mu_x$ | $\mu_y$ | $\mu_z$ | μ    | Δα   |  |  |  |  |
| [PbBr <sub>4</sub> O <sub>2</sub> ]           | -4.01   | 0.79    | -6.42   | 7.61 | 7.22 |  |  |  |  |
| [PbBr <sub>4</sub> O <sub>2</sub> ]           | 4.01    | 0.79    | -6.42   | 7.61 | 7.22 |  |  |  |  |
| $[PbBr_4O_2]$                                 | -4.01   | -0.79   | -6.42   | 7.61 | 7.22 |  |  |  |  |
| $[PbBr_4O_2]$                                 | 4.01    | -0.79   | -6.42   | 7.61 | 7.22 |  |  |  |  |
| $[PbBr_4O_2]$                                 | -4.01   | 0.79    | -6.42   | 7.61 | 7.22 |  |  |  |  |
| $[PbBr_4O_2]$                                 | 4.01    | 0.79    | -6.42   | 7.61 | 7.22 |  |  |  |  |
| [PbBr <sub>4</sub> O <sub>2</sub> ]           | -4.01   | -0.79   | -6.42   | 7.61 | 7.22 |  |  |  |  |
| [PbBr <sub>4</sub> O <sub>2</sub> ]           | 4.01    | -0.79   | -6.42   | 7.61 | 7.22 |  |  |  |  |
| $Sum([PbBr_4O_2])$                            | 0.00    | 0.00    | -51.36  |      |      |  |  |  |  |
| [OOC(CH <sub>2</sub> ) <sub>3</sub> COO]      | 0.00    | -1.74   | 7.56    | 7.76 | 0.92 |  |  |  |  |
| [OOC(CH <sub>2</sub> ) <sub>3</sub> COO]      | 0.00    | 1.74    | 7.56    | 7.76 | 0.92 |  |  |  |  |
| [OOC(CH <sub>2</sub> ) <sub>3</sub> COO]      | 0.00    | -1.74   | 7.56    | 7.76 | 0.92 |  |  |  |  |
| [OOC(CH <sub>2</sub> ) <sub>3</sub> COO]      | 0.00    | 1.74    | 7.56    | 7.76 | 0.92 |  |  |  |  |
| Sum([OOC(CH <sub>2</sub> ) <sub>3</sub> COO]) | 0.00    | 0.00    | 30.24   |      |      |  |  |  |  |
| Total                                         | 0.00    | 0.00    | -21.12  |      |      |  |  |  |  |

**Table S9.** The local dipole moment ( $\mu$ ) in Debye, as well as polarizability anisotropy ( $\Delta \alpha$ ) for eight [PbBr<sub>4</sub>O<sub>2</sub>] polyhedrons and four [OOC(CH<sub>2</sub>)<sub>3</sub>COO] groups in per unit cell of **Rb<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)]**. The charge of the structural group was estimated by the Bader charge of each atom.

| was estimated by the Bader charge of each atom. |         |         |         |      |      |  |  |  |  |  |
|-------------------------------------------------|---------|---------|---------|------|------|--|--|--|--|--|
| Dipole moment                                   | $\mu_x$ | $\mu_y$ | $\mu_z$ | μ    | Δα   |  |  |  |  |  |
| [PbBr <sub>4</sub> O <sub>2</sub> ]             | 1.11    | 4.35    | 6.01    | 7.50 | 7.02 |  |  |  |  |  |
| [PbBr <sub>4</sub> O <sub>2</sub> ]             | -1.11   | 4.35    | 6.01    | 7.50 | 7.02 |  |  |  |  |  |
| [PbBr <sub>4</sub> O <sub>2</sub> ]             | -1.11   | -4.35   | 6.01    | 7.50 | 7.02 |  |  |  |  |  |
| [PbBr <sub>4</sub> O <sub>2</sub> ]             | 1.11    | -4.35   | 6.01    | 7.50 | 7.02 |  |  |  |  |  |
| [PbBr <sub>4</sub> O <sub>2</sub> ]             | 1.11    | 4.35    | 6.01    | 7.50 | 7.02 |  |  |  |  |  |
| [PbBr <sub>4</sub> O <sub>2</sub> ]             | -1.11   | 4.35    | 6.01    | 7.50 | 7.02 |  |  |  |  |  |
| [PbBr <sub>4</sub> O <sub>2</sub> ]             | -1.11   | -4.35   | 6.01    | 7.50 | 7.02 |  |  |  |  |  |
| [PbBr <sub>4</sub> O <sub>2</sub> ]             | 1.11    | -4.35   | 6.01    | 7.50 | 7.02 |  |  |  |  |  |
| $Sum([PbBr_4O_2])$                              | 0.00    | 0.00    | 48.08   |      |      |  |  |  |  |  |
| [OOC(CH <sub>2</sub> ) <sub>3</sub> COO]        | 0.78    | 0.00    | -7.40   | 7.44 | 0.76 |  |  |  |  |  |
| [OOC(CH <sub>2</sub> ) <sub>3</sub> COO]        | -0.78   | 0.00    | -7.40   | 7.44 | 0.76 |  |  |  |  |  |
| [OOC(CH <sub>2</sub> ) <sub>3</sub> COO]        | 0.78    | 0.00    | -7.40   | 7.44 | 0.76 |  |  |  |  |  |
| [OOC(CH <sub>2</sub> ) <sub>3</sub> COO]        | -0.78   | 0.00    | -7.40   | 7.44 | 0.76 |  |  |  |  |  |
| Sum([OOC(CH <sub>2</sub> ) <sub>3</sub> COO])   | 0.00    | 0.00    | -29.6   |      |      |  |  |  |  |  |
| Total                                           | 0.00    | 0.00    | 18.48   |      |      |  |  |  |  |  |

**Table S10.** The local dipole moment ( $\mu$ ) in Debye, as well as polarizability anisotropy ( $\Delta \alpha$ ) for eight [PbBr<sub>4</sub>O<sub>2</sub>] polyhedrons and four [OOC(CH<sub>2</sub>)<sub>3</sub>COO] groups in per unit cell of Cs<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)]. The charge of the structural group was estimated by the Bader charge of each atom.



Figure S1. A photograph of the as-grown crystal without polishing for Rb<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].



١

Figure S2. A photograph of the as-grown crystal without polishing for  $Cs_3[Pb_2Br_5(OOC(CH_2)_3COO)]$ .



Figure S3. Experimental and simulated PXRD patterns of Rb<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].



Figure S4. Experimental and simulated PXRD patterns of Cs<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].



Figure S5. The EDS spectrum of Rb<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].



Figure S6. The EDS spectrum of Cs<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].



Figure S7. The IR spectrum of Rb<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].





Figure S8. The IR spectrum of Cs<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].

**Figure S9.** The environments of Rb<sup>+</sup> cations. Symmetry codes: a 1 - x, 1 - y, z; b x, 1 - y, z; c 1 - x, y, z; d 1 - x, - y, z; e x, - y, z; f 1/2 - x, - 1/2 + y, 1/2 + z; g 1/2 - x, 1/2 - y, 1/2 + z; h x, y, 1 + z; i 1/2 - x, 1/2 + y, 1/2 + z.



Figure S10.  $Rb^+$  cations are embedded into the double  $[Pb_2Br_5(OOC(CH_2)_3COO)]$  chains. Blue-green polyhedron:  $[PbBr_4O_2]$ .



Figure S11. The TGA curve of Rb<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].









Figure S14. The UV-Vis–NIR spectrum of Rb<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)]. Inset: the optical band gap.



Figure S15. The UV-Vis–NIR spectrum of  $Cs_3[Pb_2Br_5(OOC(CH_2)_3COO)]$ . Inset: the optical band gap.







Figure S17. The calculated band structure of Cs<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].



Figure S18. Optical refractive indices along principal axes *versus* photon energy for Cs<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].



Figure S19. The calculated birefringence *versus* photon energy for Cs<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].



Figure S20. The original crystal for the measurement of the birefringence for Rb<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].



Figure S21. Frequency-dependent SHG coefficients of  $|d_{31}|$ ,  $|d_{32}|$  and  $|d_{33}|$  for Rb<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].



Figure S22. Frequency-dependent SHG coefficients of  $|d_{31}|$ ,  $|d_{32}|$  and  $|d_{33}|$  for Cs<sub>3</sub>[Pb<sub>2</sub>Br<sub>5</sub>(OOC(CH<sub>2</sub>)<sub>3</sub>COO)].

#### References

[1] B. Champagne, D. M. Bishop, Calculations of nonlinear optical properties for the solid, Adv. Chem. Phys, 2003, 126, 41-92.

[2] A. H. Reshak, S. Auluck, I. V. Kityk, Specific features in the band structure and linear and nonlinear optical susceptibilities of  $La_2CaB_{10}O_{19}$  crystals, Phys. Rev. B, 2007, 75, 245120.

[3] Y. Z. Huang, L. M. Wu, X. T. Wu, L. H. Li, L. Chen, Y. F. Zhang, Pb<sub>2</sub>B<sub>5</sub>O<sub>9</sub>I: An iodide borate with strong second harmonic generation, J. Am. Chem. Soc, 2010, 132, 12788-12789.

[4] Y. C. Yang, X. Liu, J. Lu, L. M. Wu, L. Chen, [Ag(NH<sub>3</sub>)<sub>2</sub>]<sub>2</sub>SO<sub>4</sub>: A strategy for the coordination of cationic moieties to design nonlinear optical materials, Angew. Chem. Int. Ed, 2021, 60, 21216-21220.

[5] Z. Ma, J. Hu, R. Sa, Q. Li, Y. Zhang, K. Wu, Screening novel candidates for mid-IR nonlinear optical materials from  $I_3$ –V–VI<sub>4</sub> compounds, J. Mater. Chem. C, 2017, 1963-1972.

[6] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, 1996, 77, 3865-3868.

[7] F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys, 2005, 7, 3297-3305.

[8] F. Weigend, Accurate coulomb-fitting basis sets for H to Rn, Phys. Chem. Chem.Phys, 2006, 8, 1057-1065.

[9] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P.

Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding,
F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe,
V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M.
Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R.
Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.
Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R.
L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09,
Revision A.02, Gaussian, Inc., Wallingford CT, 2016.
[10] T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput.

Chem, 2012, 33, 580-592.