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Details for Real-time approach to nonlinear optical properties  

 

Nonlinear optical properties are obtained within the real-time (RT) approach developed by 

Attaccalite et.al.1–3 In this approach the time-dependent Schrödinger equation is integrated to obtain 

the time-dependent valence states ∣ 𝜐𝑚𝐤⟩,shown as:  

𝑖ℏ
d

d𝑡
|𝑣𝑚𝐤⟩ = (𝐻𝐤

sys
+ 𝑖ℰ ⋅ ∂̃𝐤)|                              （1） 

Herein ∣ 𝜐𝑚𝐤⟩ , 𝐻𝐤
sys

  is the system Hamiltonian—which is discussed later; ℰ ⋅ ∂̃𝐤  describes the 

coupling with the external field in the dipole approximation. While the Born-vonarmar periodic 

boundary conditions are imposed, the coupling takes the form of a 𝐤-derivative operator ∂̃𝐤. The 

tilde indicates that the operator is ‘gauge covariant’ and guarantees that the solutions of eqn (1) are 

invariant under unitary rotations among occupied states at 𝐤.  

From ∣ 𝜐𝑚𝐤⟩, the time-dependent polarization of the system P|| along the lattice vector a is calculated 

as,  

𝑃∥ = −
𝑒𝑓|𝐚|

2𝜋𝜈𝑁𝐤⊥

∑  𝐤⊥
Imlog ∏  

𝑁𝐤∥
−1

𝐤⊥
𝑑𝑒𝑡𝑆(𝐤, 𝐤 + 𝐪∥)               （2） 

where 𝑆(𝐤, 𝐤 + 𝐪∥)  is the overlap matrix between ∣ 𝜐𝑛𝐤⟩  and ∣ 𝑣𝑚𝐤+𝐪∥
⟩ . Furthermore, ν is the 

unit cell volume,  𝑓  is the spin degeneracy, 𝑁𝐤⊥
  and 𝑁𝐤∥

  are respectively the number of 𝐤 

points along and perpendicular to the polarization direction, and 𝐪∥ = 2𝜋/(𝑁𝐤∥
𝐚) . Finally, the 

second harmonic coe-cient is extracted from the power series of the polarization in the laser field 

ℰ, 𝐏 = 𝜒(1)ℰ + 𝜒(2)ℰℰ + 𝜒(3)ℰℰℰ + ⋯ 

In eqn (1), the model Hamiltonian chosen for 𝐻𝐤
sys

 , determines the level of approximation in the 

description of correlation effects in the SHG spectra. In this work, two different models for the 

system Hamiltonian are adopted: (i) the independent-particle approximation (IPA) model and (ii) 

the real-time GW + BSE model. In IPA, the system Hamiltonian is simply evaluated from the Kohn-

Sham DFT Hamiltonian with G0W0 corrections by a scissor operator, 

 𝐻𝐤
sys

= 𝐻𝐤
DFT + ∑  𝑛𝐤 Δ𝑛𝐤|𝑣𝑛𝐤

0 ⟩⟨𝑣𝑛𝐤
0 |                             (3) 

where Δ𝑛𝐤 = 𝐸𝑛𝐤
𝐆0𝐖0 − 𝐸𝑛𝐤

𝐃𝐅𝐓 . This model is named as IPA-G0W0 for simplicity in the main text. 

In RT-GW+BSE model,  

𝐻𝐤
sys

= 𝐻𝐤
DFT + ∑  𝑛𝐤 Δ𝑛𝐤|𝑣𝑛𝐤

0 ⟩⟨𝑣𝑛𝐤
0 | + 𝑉ℎ(𝐫)[Δ𝜌] + ΣSEX[Δ𝛾]          (4) 

where ∆ρ ≡ ρ(r;t) − ρ(r;t = 0) is the variation of the electronic density and ∆γ ≡ γ(r, r ′ ;t) − γ(r, r ′ ;t 

= 0) is the variation of the density matrix induced by the external field ℰ. 𝑉ℎ(𝐫)[Δ𝜌] is the Hartree 

potential and is responsible for the local-field effects originating from system inhomogeneities. The 

last term ΣSEX[Δ𝛾] , is the screened-exchange self-energy that accounts for the electron-hole 

interaction, and is given by the convolution between the screened interaction W and Δ𝛾. In the 

linear response limit, the GW+BSE model reproduces the optical absorption calculated by solving 

the BetheSalpeter equation. 4This model is named as RT-G0W0+BSE for simplicity in the main text.  

The EOM, Eq.(1), can be numerically solved for |vmk⟩ using the following algorithm developed by 

Crank and Nicholson5 for both Hermitian and non-Hermitian type Hamiltonians:  

∣ 𝑣𝑛𝐤(𝑡 + Δ𝑡)⟩ =
𝐼−𝑖(Δ𝑡/2)ℋ𝐤

system
(𝑡)

𝐼+𝑖(Δ𝑡/2)ℋ𝐤
system

(𝑡)
∣ 𝑣𝑛𝑘(𝑡)⟩,                        (5)  

in which I is the identity element. The operation is strictly unitary for any value of time-step ∆t. It 

turns out that if the applied field is a Dirac δ-type, the Fourier transformed responses can be 



evaluated at all frequencies. In our simulations, we switch on the monochromatic field at t = t0. This 

sudden switch excites the eigenfrequencies of the system introducing spurious contributions to the 

nonlinear response. An imaginary term is added into the Hamiltonian to simulate a finite dephasing,  

Γ = −
𝑖

𝛾deph
∑ ∣ 𝑣𝐤,𝑙⟩⟨𝑣𝐤,𝑙 ∣ −∣ 𝑣𝐤,𝑙

0 ⟩𝑙 ⟨𝑣𝐤,𝑙
0 ∣},                          (6)  

where ∣ 𝑣𝐤,𝑙
0 ⟩ are the valence bands of the unperturbed system and γdeph is the dephasing rate. Then 

we run the simulations for a time much larger than 1/γdeph and sample P(t) close to the end of the 

simulation. Since γdeph determines also the spectral broadening, we cannot choose it arbitrary small. 

The smaller the dephasing rate is, the longer the simulation is. As an empirical parameter, the 

dephasing time 1/γdeph is usually set as 6.6 fs, which corresponds to a spectral broadening of 

approximately 0.2 eV. 

 

Table S1. Elastic stiffness constants, Young's modulus (Y, N/m), Shear modulus (G, N/m), and 

Poisson ratio (ν) of Ti2O3 and Zr2O3 monolayers. 

Systems C11 C12 C66 Y G ν 

Ti2O3 184.49 41.50 71.49 175.15 71.49 0.22 

Zr2O3 189.13 10.86 89.13 188.50 89.13 0.06 

Table S2. Effective masses of Ti2O3 and Zr2O3 in unit of m0. 

 Electron Hole 

Ti2O3 
Γ→K 1.02 Γ→K -0.62 

Γ→M 1.00 Γ→M -0.61 

Zr2O3 
K→Γ 0.34 K→Γ -0.77 

K→M 0.36 K→M -0.83 

 

Table S3. SHG coefficients (pm/V) of single-layer MoS2, Ti2O, Zr2O3 and NbOCl2 at different 

wavelengths.  
1360 nm 1400 nm 1480 nm 1560 nm 

MoS2  282.1 153.7 44.7 24.2 

Ti2O3 231.0 311.2 316.2 377.7 

Zr2O3 

NbOCl2 

1552.4 

58.6 

1630.0 

56.7 

1541.3 

56 

1395.7 

55 

 

Figure S1. Band structures of 2H-Ti2O3 (a) and 2H-Zr2O3 (b) with and without SOC. 

Variation of band gap from DFT+U method with Ueff values (c). The band gap form 

the GW method is shown.  



 

 

Figure S2. The most stable configurations and relative energies after relaxation for (a-

c) 1T-M2O3 and (d-f) 2H-M2O3(M=Ti, Zr, Hf). 

 

 

 

Figure S3. Phonon spectrum of (a-c) 1T and (e-f) 2H-M2O3(M = Ti, Zr, Hf). 

 



 

Figure S4. Band structure of (a) 1T-Ti2O3, (b) 1T-Zr2O3,and (c) 1T-Hf2O3. 

 

 

 Figure S5. Energy and temperature changes of Ti2O3 during the 300/600/900 K AIMD 

simulation, and final snapshots of side and top views. 



 

Figure S6. Energy and temperature changes of Zr2O3 during the 300/600 K AIMD 

simulation, and final snapshots of side and top views. 

 

 

Figure S7. Energy and temperature changes of Hf2O3 during the 100/300/600 K AIMD 

simulation, and final snapshots of side and top views. 



 

Figure S8. Plots of the ELF of (a) Ti2O3 and (b) Zr2O3 monolayers. The isosurface 

value is 0.01 Bohr/Å3. 

 

Figure S9. Schematic representation of energy gaps, ΔE1 and ΔE2, in the band structure 

(a), as well as the position of the band edges and the two energy gaps of (b) 2H-Ti2O3 

and (c) 2H-Zr2O3 as a function of strain. 

 

 

Figure S10. Variation of the energy gap from DFT-PBE as a function of uniaxial strain 

at different points of high symmetry in 2H-Ti2O3 and 2H-Zr2O3 monolayers. Yellow, 

blue, and white represent indirect gap, direct gap, and metallic properties, 



respectively. 

 
Figure S11. Band structures of 2H-Ti2O3 (a) and 2H-Zr2O3 (b) monolayers were 

calculated using the G0W0 method.  

 

 

Figure S12. Real-space wave functions of the lowest energy excitons for (a) 2H-Ti2O3 

and (b) 2H-Zr2O3. 

 

Figure S13. The absolute value of SHG coefficient for Ti2O3 with energy band 

considering top VB to bottom CB (red circle) and converged results (green triangle), 

and the schematic diagram of virtual transitions from top VB to bottom CB in the band 

structure. 

 



 

Figure S14. Total and projected densities of states of the s and p orbitals of the oxygen 

in 2H-Ti2O3 and 2H-Zr2O3. 

 

  

Figure S15. Absolute value of SHG coefficient of Zr2O3 under biaxial and uniaxial 

strains.   
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