Supporting Information

Enhanced Sensitivity in Self-Powered Dion-Jacobson Perovskite X-ray Detectors via a Ternary-Solvent-Ink Approach

Liting Tao¹, Li Ding¹, Yuyang Li¹, Hui Liu¹, Meiping Gao³, Deren Yang^{1,3}, and Yanjun Fang^{1,2,3*} ¹State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China ²Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, P. R. China

³Shangyu Institute of Semiconductor Materials, Shaoxing 312300, P. R. China

^{*} E-mail: jkfang@zju.edu.cn

Figure S1. Optical microscope images of quasi-2D DJ perovskite films made by with single, binary, and

ternary solvents.

Figure S2. The XRD pattern of quasi-2D films made by ternary solvent ink strategy under different

processing temperatures.

Figure S3. The sensitivity derived by linear fitting the dose rate dependent photocurrent of quasi-2D devices made by single, binary and ternary solvents .

Figure S4. The photocurrent response of the target devices under on/ off X-ray illumination with the dose

rate of 53.5 $nGy_{air} s^{-1}$.

Figure S5. Temporal response of the 7 μ m thick devices at 0 V bias under 532 nm LED illumination with a modulation frequency of 6 Hz.

Figure S6. Temporal response of the 16 μ m thick devices at 0 V bias under 532 nm LED illumination with a modulation frequency of 6 Hz.

Figure S7. Voltage-dependent photocurrent curve of devices made by ternary solvents for the derivation

of $\mu\tau$ product.

Materials	Detection Limit (nGy _{air} s ⁻¹)	Sensitivity (µC Gy _{air} ⁻¹ cm ⁻²)	Working bais (V)
Cs ₂ Pb(SCN) ₂ Br ₂ film ¹	42.4	216.3	40
(S-BPEA) ₂ FAPb ₂ I ₇ SC ²	161	87.8	Self-driven
(4AMPY)(MA) ₃ Pb ₄ I ₁₃ /MAPbBr ₃ SC ³	77	1850	Self-driven
PEA2MA4Pb5I16 film4	22.7	236	30
CsPb ₂ Br ₅ SC ⁵	12.7	8865.6	50
EPZPbBr ₄ SC ⁶	<5.43	1240	10
(R/S-PPA)(IEA)PbBr ₄ SC ⁷	3	48.4	Self-driven
This work 7 µm	39	4853	Self-driven
This work 16 µm	27	8205	Self-driven

Table S1 Comparison of the device performance of different 2D perovskite X-ray detectors

Reference

1 D. Liu, H. Di, J. Ren, W. Jiang, H. Li, C. Zhao, D. Xin, Z. Xing, X. Zheng and Y. Zhao, *Small*, 2023, **19**, 2304201.

Q. Guan, H. Ye, S. You, Z.-K. Zhu, H. Li, X. Liu and J. Luo, *Small*, 2024, 20, 2307908.
X. Zhang, X. Song, M. Abulikemu, B. Shao, S. Chen, L. Gutiérrez-Arzaluz, G. Si, T.

Ahmad, W. Wu, O. F. Mohammed and O. M. Bakr, Adv. Funct. Mater., 2024, 34, 2312871.

4 H. Chen, Z. Zhu, B. Zhao, W. Huang, G. Qu, Z.-X. Xu, X.-F. Yu, Q. Xiao, S. Yang and Y. Li, *Adv. Sci.*, 2024, **11**, 2309185.

5 X. Feng, L. Zhang, B. Zhang, J. You, K. Li, H. Zeng, X. Wang, Z. Dai, S. Jia, H. Bao, S. Wang and S. Liu, *Adv. Funct. Mater.*, 2024, **n**/a, 2402166.

6 M. Xia, X. Sun, F. Ye, M. Liao, J. Liu, S. Liu, D. Wu, Y. Xu, X. Zhang, K.-H. Xue, X. Miao, J. Tang and G. Niu, *Adv. Mater.*, 2024, **36**, 2313663.

7 Z.-K. Zhu, J. Wu, P. Yu, Y. Zeng, R. Li, Q. Guan, H. Dai, G. Chen, H. Yang, X. Liu, L. Li, C. Ji and J. Luo, **n**/**a**, 2409857.