Fast synthesis of nickel phosphide nanosheets for ultrastable hydrogen evolution in seawater splitting

Weiwu Chen,^a Feng Lin,^c Chong Wang,^c Zhiming M. Wang^{a, b} and Zhaojun Qin*^a

^{a.} Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, PR China.

^{b.} Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China

^{c.} National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, PR China.

Email: ZjQin@csj.uestc.edu.cn (Z. Q.)

Experimental

Materials

Ni foam (thickness: 1.6 mm), red phosphorous powder (P, AR, 98.5%, Aladdin), cobalt (II) nitrate hexahydrate ($Co(NO_3)_2 \cdot 6H_2O$, 99.99%, Aladdin), iron (III) nitrate nonahydrate ($Fe(NO_3)_3 \cdot 9H_2O$, 99.99%, Aladdin), potassium hydroxide (KOH, 50% w/v, Aladdin), graphite rod (diameter: 6 mm, length: 90 mm), and Pt wire (diameter: 0.5 mm, length: 30 mm, CH Instrument) were used. Deionized water (resistivity: 18.2 M Ω cm) and sea water (Dongtou District, Zhejiang Province, China) were used for all of the aqueous solutions.

Characterization

X-ray diffraction (XRD, MiniFlex600, Regaku), X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha), scanning electron microscopy (SEM, Phenompharos, Phenom) coupled with energy-dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM, FEI TalosF200x) coupled with EDS were employed.

Electrochemical measurements

All electrochemical performance parameters were tested in alkaline seawater (1 M KOH) using a three-electrode electrochemical station. The alkaline seawater (1 M KOH) is the mixture of 26.2 mL 50% w/v KOH solution and 473.8 mL seawater. Graphite rod and a Hg/HgO electrode served as the counter electrode and the reference electrode, respectively. All potentials were converted to a reversible

hydrogen electrode (RHE) by the Nernst equation ($E_{RHE} = E_{Hg/HgO} + 0.0591$ pH + 0.098) and all measurements were conducted with iR compensation. The polarization curves were tested by sweeping the potential from 0.065 to -0.325 V vs. RHE at a rate of 2 mV s⁻¹. The cyclic voltammetry (CV) curves were conducted from 1.025 to 1.125 V vs. RHE at different rates. Electrochemical impedance spectroscopy (EIS) was performed at -150 mV vs. RHE from 100 KHz to 10 mHz with an amplitude of 10 mV.

Supplementary Figures

Figure S1. EDS mapping images of Ni foam from SEM.

Figure S2. XPS spectrum of Co-Ni₅P₄-5m.

Figure S3. LSV curves of Co-Ni $_5P_4$ -5m in H2-saturated solution and regular 1 M

KOH seawater solution.

Figure S4. ECSA normalized LSV curves of Co-Ni $_5P_4$ -5m and Co-Ni $_5P_4$ -1m.

Figure S5. CV curves recorded for Fe-Ni₅P₄-5m electrodes over the potential range between 0.045 and -0.055 V *vs.* RHE at different rates in 1 M KOH seawater.

Figure S6. ECSA normalized LSV curves of Co-Ni₅P₄-5m and Fe-Ni₅P₄-5m.

Figure S7. In-situ Raman spectra of Co-Ni₅P₄-5m, Fe-Ni₅P₄-5m and Co-Ni₅P₄-1m at the overpotential of 0 and 300 mV.

Figure S8. (a) XPS spectra of Co-Ni₅P₄-5m and (b) high-resolution XPS spectra of P

2p in Co-Ni₅P₄-5m after testing.

Figure S9. (a) Polarization curves of Co-Ni₅P₄-5m at different temperature. (b) Chronopotentiometry curve at the current density of 100 mA cm⁻² in 40°C electrolyte.

Figure S10. (a) The schematic of two-compartment electrochemical cell. (b) Polarization curve for overall water splitting. (c) Chronopotentiometry curve at the current density of 500 mA cm⁻² for overall water splitting. (d) Experimental and theoretical amounts of H_2 and O_2 at the current density of 100 mA cm⁻².

Turnover frequency calculations

The turnover frequency (TOF) was calculated by the following formula according to previous reports.^{1, 2}

 $TOF \ per \ site = \frac{\# \ Total \ Hydrogen \ Turnovers/cm^2 geometric \ area}{\# \ Surface \ Sites \ /cm^2 \ geometric \ area}$

Here, the total number of hydrogen turnovers is calculated as follows:

$$\begin{split} \#_{H_2} \\ &= \left(j\frac{mA}{cm^2}\right) \left(\frac{1C\ s^{-1}}{1000\ mA}\right) \left(\frac{1\ mol\ e^-}{96485.3\ C}\right) \left(\frac{1\ mol\ H_2}{2\ mol\ e^-}\right) \left(\frac{6.022\ \times\ 10^{23}\ H_2\ mol\ H_2}{1\ mol\ H_2} \\ &\times\ 10^{15} \frac{H_2/s}{cm^2}\ per\ \frac{mA}{cm^2} \end{split}$$

The surface sites are calculated through the following equation:

$$\frac{\# Surface \ sites}{cm^2 \ geometric \ area} = \frac{\# \ Surface \ sites \ (flat \ standard)}{cm^2 \ geometric \ area} \times Roughness \ factor$$

Here, the roughness factor is related to the double-layer capacitance (C_{dl}), which we can set as 40 μ F cm⁻² for a flat electrode according to the previous reports, and the corresponding number of surface sites per cm² is known to be 2 × 10¹⁵ from the previous reports.^{3, 4} The surface active sites for Co-Ni₅P₄-5m can then be calculated to

be
$$\frac{7.19 \times 10^4}{40} \times 2 \times 10^{15}$$
 surface sites/cm² = 3.60 × 10¹⁸ surface sites/cm².

Thus, the TOF for Co-Ni₅P₄-5m at the overpotential of 300 mV is calculated as follows:

$$\text{TOF} = \begin{pmatrix} 3.12 \times 10^{15} \frac{H_2/s}{cm^2} \\ \frac{mA}{cm^2} \end{pmatrix} \begin{pmatrix} 461.6 \frac{mA}{cm^2} \end{pmatrix} \begin{pmatrix} \frac{1 \ cm^2}{3.60 \ \times \ 10^{18} \ surface \ sites} \end{pmatrix} = 0.40 \ s^{-1}$$

Similarly, the TOF values for Co-Ni₅P₄-1m and Fe-Ni₅P₄-5m are calculated as 0.26 and 0.36 s⁻¹.

References

- 1 J. Kibsgaard, C. Tsai, K. Chan, J. D. Benck, J. K. Nørskov, F. Abild-Pedersen and T. F. Jaramillo, *Energy Environ. Sci.*, 2015, **8**, 3022-3029.
- 2 L. Yu, I. K. Mishra, Y. Xie, H. Zhou, J. Sun, J. Zhou, Y. Ni, D. Luo, F. Yu, Y. Yu, S. Chen and Z. Ren, *Nano Energy*, 2018, **53**, 492-500.
- 3 H. Zhou, F. Yu, Y. Huang, J. Sun, Z. Zhu, R. J. Nielsen, R. He, J. Bao, W. A. Goddard, III, S. Chen and Z. Ren, *Nat. Commun.*, 2016, 7, 12765.
- 4 Q. Zhou, Z. Shen, C. Zhu, J. Li, Z. Ding, P. Wang, F. Pan, Z. Zhang, H. Ma, S. Wang and H. Zhang, *Adv. Mater.*, 2018, **30**, 1800140.