Supporting Information

Multiscale Synergetic Bandgap/Structure Engineering to Construct Full-Spectrum Responsive Heterostructured MoS₂/SnS₂ Photocatalysts Wenjie Zhao^a, Jinyan Liu^a, Weiye Hou^a, Zhe Zhang^a, Xinrui Chen^a, Xianghua Zeng^{a,b}, Weiwei Xia^{a*} ^a College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P.R. China ^bCollege of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, P. R. China

^{*} Corresponding authors. Email: <u>wwxia@yzu.edu.cn</u>

RESULTS AND DISCUSSION

Figure S2. The time-dependent temperature and thermal image for SnS₂ and MoS₂/SnS₂ under UV-vis light and NIR light (808 and 880 nm) irradiation.

Figure S3. (a) Band structure of the original SnS₂ monolayer. (b) Band structure of the original MoS₂ multilayer.

Fig- S4. Cyclic voltammetry (CV) of at various scan rates for (a) SnS₂ and (b) MoS₂/SnS₂.

 Table S1. The simulated parameter values obtained by fitting the Nyquist plots.

Samples	SnS_2	MoS ₂ @SnS ₂
R _s (ohm)	7.94	8.94
R _{ct} (ohm)	566.8	3.56
CPE1(mF)	912.71	685.86