Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplemental file showing original data

The x-axis shows the percentage of the area of the Schottky contact.

The x-axis shows the percentage of the diameter of the Schottky contact.

Energy loss = D^*P_{ON} + (1-D)* P_{OFF} = D^*V_F (at 100A/cm²)*100 A/cm² + (1-D)*100V*I (at-100V), D = Duty cycle (assume 1%)

Meshing Process

The number of nodes should be increased at the interfaces, as illustrated in the figure.

one simulation process \longrightarrow 2-3 hours

Why we have two linear regions for 16 % and 4 %?

Plan

I will extract the electron current density for the 16% and 4% cases and compare them with the 64% case. I expect there to be two primary electron transfer pathways from Ga₂O₃ to Ni in the 16% and 4% scenarios:

Direct Transfer: From Ga₂O₃ to the Ni contact through the small 20 µm ring.

Indirect Transfer: From Ga₂O₃ to the ultrathin NiO layers, then to the Ni contact.

These transfer mechanisms can influence the formation of two linear regions in the current density profiles.

4 % (20 μm) Junction Barrier Schottky diode

 \rightarrow Ni/ β -Ga₂O₃thermionic emission

 \rightarrow Ni/NiO/ β -Ga₂O₃thermionic emission

 \rightarrow Ni/ β -Ga₂O₃thermionic emission

 \longrightarrow Ni/NiO/ β -Ga₂O₃thermionic emission

 $\longrightarrow Ni/\beta-Ga_2O_3 thermionic emission$ $\longrightarrow Ni/NiO/\beta-Ga_2O_3 thermionic emission$

Comparison of Electron Transfer in Junction Barrier Schottky Diodes

Key Findings:

Direct Transfer Efficiency:

The direct transfer for the 64% Junction Barrier Schottky diode is significantly higher compared to the 16% and 4% diodes.

Impact on Linear Regions: For the 16% and 4% diodes, the presence of two linear regions can be attributed to the effect of indirect transfer mechanisms.

Conclusion:

Indirect Transfer Mechanism: In the 16% and 4% Junction Barrier Schottky diodes, the thermionic emission of electrons from Ga₂O₃ to the ultrathin NiO layers, followed by transfer to the Ni contact, explains the formation of the two linear regions observed in the current density profiles.

