Supporting Information

A Facile Membraneless Method for Detecting Alkali-Metal Cations Using Organic Electrochemical Transistors

Waner He, Yurika Kashino, Naoya Nozaki, Joost Kimpel, Hidetoshi Matsumoto, Yuhei Hayamizu, and Tsuyoshi Michinobu*

Dr. W. He, Y. Kashino, N. Nozaki, Prof. H. Matsumoto, Prof. Y. Hayamizu, Prof. T. Michinobu Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan Email: michinobu.t.aa@m.titech.ac.jp

J. Kimpel

Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden

Scheme S1 The synthesis of the polymer p(g2T-TT). ^{S1}

Fig. S1 Comparison of grazing incidence wide-angle X-ray scattering (GIWAXS) 2D patterns of three polymer thin films without annealing: (a) p(g2T-TT), (b) 1wt% 18C6-mixed p(g2T-TT), and (c) 1wt% 15C5-mixed p(g2T-TT).

Fig. S2 The corresponding 1D profiles from 2D GIWAXS patterns $(-90^{\circ}\pm10^{\circ} \text{ for out-of-plane}; -5^{\circ}\pm5^{\circ} \text{ and } -175^{\circ}\pm5^{\circ} \text{ for in-plane})$ of (a, d) p(g2T-TT), (b, e) 1wt% 18C6-mixed p(g2T-TT) and (c, f) 1wt% 15C5-mixed p(g2T-TT) films (a-c) before annealing or (d-f) after annealing at 125 °C for 10 min.

T _{annealing} (°C)	Materials	lamellar spacing (100)					lamellar spacing (200)		
		q (Å-1)	d-spacing ^[a] (Å)	FWHM ^[b] (Å ⁻¹)	L_{c} (Å)	q (Å-1)	<i>d</i> -spacing ^[a] (Å)	FWHM ^[b] (Å ⁻¹)	$L_{\rm c}({\rm \AA})$
125℃	p(g2T-TT)	0.338	18.59	0.10	56.5				
	1wt% 18C6	0.323	19.45	0.05	113.1	0.627	10.02	0.07	80.8
	1wt% 15C5	0.252	24.93	0.04	141.4	0.479	13.12	0.07	80.8
As-cast	p(g2T-TT)								
	1wt% 18C6	0.246	25.54	0.13	43.5				
	1wt% 15C5	0.258	24.35	0.10	56.5				

Table S1. Extracted peak values and calculated parameters from 1D GIWAXS profiles

[a] *d*-spacing = $2\pi/q$; [b] $L_c = 2\pi K/FWHM$ (K = 0.9).

Fig. S3 Contact angles of polymer thin films on Si⁺⁺/SiO₂ substrate in air: (a, d) p(g2T-TT), (b, e) 1wt% 18C6-mixed p(g2T-TT), and (c, f) 1wt% 15C5-mixed p(g2T-TT).

Materials	$ heta_{ m water}$ (°)	$ heta_{ m glycerol}$ (°)	$\gamma (\mathrm{mN} \;\mathrm{m}^{-1})$
p(g2T-TT)	74.1	77.5	31.2
18C6-mixed p(g2T-TT)	68.8	77.7	40.4
15C5-mixed p(g2T-TT)	86.5	79.1	22.4

Table S2. Contact angles and surface energy of the polymer thin films with water and glycerol drop

Materials	p(2gT-TT)	18C6-mixed p(2gT-TT)	15C5-mixed p(2gT-TT)	p(2gT-TT)	18C6-mixed p(2gT-TT)	15C5-mixed p(2gT-TT)
		Na^+			K^+	
$V_{ m th}$ (V)	-0.53 ± 0.067	-0.24 ± 0.048	-0.11 ± 0.054	-0.51 ± 0.065	-0.22 ± 0.068	-0.069 ± 0.079
$g_{\rm m}({\rm mS})$	0.62 ± 0.014	0.33 ± 0.022	0.37 ± 0.024	0.63 ± 0.028	0.37 ± 0.024	0.40 ± 0.019
$\mu C^* (\text{F cm}^{-1} \text{ V}^{-1} \text{ s}^{-1})$	24.23 ± 2.21	10.51 ± 0.92	13.99 ± 1.69	23.69 ± 2.36	15.21 ± 0.55	15.05 ± 1.17

Table S3. Summary of average threshold voltage (V_{th}), transconductance (g_{m}), and μ C* value in OECT.

Table S4. Summary of the ion sensitivity, linear range of detection, and limit of detection (LOD) in OECTs

Active Materials	Cations	$I_{\rm D}$ Sensitivity ($\mu A \ dec^{-1}$)	Linear range (M)	LOD (M)
n (~) T TT)	Na ⁺	10.63	$10^{-4} \sim 1$	1.65×10 ⁻⁵
p(g21-11)	\mathbf{K}^+	10.45	$10^{-4} \sim 1$	3.34×10 ⁻⁵
18C6-mixed	Na^+	7.84	$10^{-3} \sim 1$	4.06×10 ⁻⁴
p(2gT-TT)	\mathbf{K}^+	12.46	$10^{-4} \sim 1$	6.22×10 ⁻⁵
15C5-mixed	Na ⁺	10.3	$10^{-4} \sim 1$	1.81×10 ⁻⁴
p(2gT-TT)	K^+	13.9	$10^{-4} \sim 1$	9.93×10 ⁻⁵

Fig. S4 Operation stability of drain current for IS-OECTs. Transient response of drain current for V_D is -0.4 V and square pulse V_G switching between 0 and -0.4 V with the pulse width of 5 s for 450 cycles in 0.1 M KCl aqueous solution. The right figures show the first 45 cycles (top) and the last 45 cycles (bottom): (a) pristine p(g2T-TT); (b) 18C6-mixed p(g2T-TT), and (c) 15C5-mixed p(g2T-TT).

Table S5. Average drain current of "ON" and "OFF" states at first 45 cycles and last 45 cycles in transient response with 0.1 M NaCl or KCl aqueous solutions as the electrolyte under switching gate voltage as 0 V/-0.4 V in OECTs

Testing	Materials	p(2gT-TT)	18C6-mixed p(2gT-TT)	15C5-mixed p(2gT-TT)	p(2gT-TT)	18C6-mixed p(2gT-TT)	15C5-mixed p(2gT-TT)
Cycles			Na^+			\mathbf{K}^+	
First 45 Cycles	I_{on} (μA)	-24.3	-70.2	-30.7	-26.1	-23.3	-28.5
	$I_{\rm off}(\mu A)$	-0.114	-0.731	-0.0692	-0.134	-0.213	-0.970
Last 45 Cycles	I_{on} (μA)	-24.5	-54.4	-30.9	-31.6	-17.5	-27.0
	$I_{off}(\mu A)$	-0.141	-1.42	-0.0136	-0.145	-0.222	-0.0629
Retention		100%	76.3%	100%	100%	74.8%	97.8%

Reference

S1 A. Giovannitti, D. T. Sbircea, S. Inal, C. B. Nielsen, E. Bandiello, D. A. Hanifi, M. Sessolo, G. G. Malliaras, I. McCulloch and J. Rivnay, *Proc. Natl. Acad. Sci. U.S.A.*, 2016, **113**, 12017-12022.